-
摘要: 基于小波分析的Contourlet变换(Wavelet-based contourlet transform, WBCT)能有效地反映虹膜图像纹理的视觉感知特性. 用级联BP神经网络确定图像的评估区域后, 对区域图像进行WBCT分解, 并分别定义和计算了5种质量评价指标来评估离焦模糊图像、运动模糊图像、佩带隐形眼镜图像、睫毛和眼睑遮挡图像. 实验结果表明, 定义的指标可以快速精确地评价这几种图像的质量. 并且评价结果与人眼主观评价一致, 优于其他评价算法.
-
关键词:
- 图像质量评价 /
- 评估区域 /
- BP神经网络 /
- 基于小波分析的Contourlet变换
Abstract: Wavelet-based contourlet transform (WBCT) can efficiently reflect visual characteristics of iris textures. After localizing a region of evaluation by using a cascaded BP neural network, the region of image is decomposed with WBCT. Then, 5 image quality assessment indices are defined and calculated for defocused images, motion blurred images, contact lens wear images, eyelash and eyelid occluded images, respectively. Experimental results indicate that these indices can precisely evaluate these cases with low computational cost. Moreover, the evaluation results have good consistency with subjective assessment of human beings. Compared with the existing methods, our method achieves better performance. -
计量
- 文章访问数: 2785
- HTML全文浏览量: 89
- PDF下载量: 1323
- 被引次数: 0