摘要:
为了使传统的贝叶斯最优分类器能够处理模糊信息和实现推理过程的自动化, 在这篇文章里我们将模糊信息嵌入到贝叶斯最优分类器中, 形成新的贝叶斯最优分类器. 它不但能有效地处理模糊信息, 而且还保留了贝叶斯最优分类器的学习性能. 再者, 根据模糊集理论的发展, vague 集也嵌入到贝叶斯最优分类器中形成 vague 贝叶斯最优分类器.它能同时模拟模糊信息正、反两方面的特征. 进一步, 提出能同时处理正、反和不确定三方面模糊信息的集对贝叶斯最优分类器. 最终, 为了实现贝叶斯最优分类器的自动推理, 提出一种基于知识的人工神经网络 (KBANN) 的贝叶斯最优分类器. 它不仅降低了贝叶斯最优分类器的计算量, 而且还改善了它的分类学习质量.
Abstract:
To make conventional Bayesian optimal classifier possess the abilities of disposing fuzzy information and realizing the automation of reasoning process, a new Bayesian optimal classifier is proposed with fuzzy information embedded. It can not only dispose fuzzy information effectively, but also retain learning properties of Bayesian optimal classifier. In addition, according to the evolution of fuzzy set theory, vague set is also imbedded into it to generate vague Bayesian optimal classifier. It can simultaneously simulate the twofold characteristics of fuzzy information from the positive and reverse directions. Further, a set pair Bayesian optimal classifier is also proposed considering the threefold characteristics of fuzzy information from the positive, reverse, and indeterminate sides. In the end, a knowledge-based artificial neural network (KBANN) is presented to realize automatic reasoning of Bayesian optimal classifier. It not only reduces the computational cost of Bayesian optimal classifier but also improves its classification learning quality.