2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输入受限的挠性航天器全驱姿态饱和控制

王典 吴云华 岳程斐 马松靖

王典, 吴云华, 岳程斐, 马松靖. 输入受限的挠性航天器全驱姿态饱和控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230691
引用本文: 王典, 吴云华, 岳程斐, 马松靖. 输入受限的挠性航天器全驱姿态饱和控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230691
Wang Dian, Wu Yun-Hua, Yue Cheng-Fei, Ma Song-Jing. Fully actuated flexible spacecraft attitude control with input constraint. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230691
Citation: Wang Dian, Wu Yun-Hua, Yue Cheng-Fei, Ma Song-Jing. Fully actuated flexible spacecraft attitude control with input constraint. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230691

输入受限的挠性航天器全驱姿态饱和控制

doi: 10.16383/j.aas.c230691
基金项目: 国家自然科学基金资助 (61973153)
详细信息
    作者简介:

    王典:南京航空航天大学航天学院博士研究生. 主要研究方向为复杂航天器姿态控制, 非线性控制. E-mail: wd666999@nuaa.edu.cn

    吴云华:南京航空航天大学航天学院研究员. 2008年获得哈尔滨工业大学博士学位. 主要研究方向为姿轨动力学与控制, 航天器地面物理仿真. 本文通信作者. E-mail: yunhuawu@nuaa.edu.cn

    岳程斐:哈尔滨工业大学(深圳)空间科学与应用技术研究院副教授. 2019年获得新加坡国立大学博士学位: 主要研究方向为航天器高性能控制和在轨服务. E-mail: yuechengfei@hit.edu.cn

    马松靖:南京航空航天大学航天学院博士研究生. 主要研究方向为航天器动力学建模与控制, 卫星任务规划. E-mail: 309609594@qq.com

Fully Actuated Flexible Spacecraft Attitude Control With Input Constraint

Funds: Supported by National Natural Science Foundation of China (61973153)
More Information
    Author Bio:

    WANG Dian Ph. D. candidate at the School of Astronautics, Nanjing University of Aeronautics and Astronautics. Her research interest covers attitude control for complex spacecraft and nonlinear control

    WU Yun-Hua Professor at the School of Astronautics, Nanjing University of Aeronautics and Astronautics. He received his Ph. D. degree in 2008 from Harbin Institute of Technology. His research interest covers attitude-orbit dynamics and control, and spacecraft hardware-in-the-loop simulation. The corresponding author of this paper

    YUE Cheng-Fei Associate professor at the Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen. He received his Ph.D. degree from the National University of Singapore in 2019. His research interest covers high-performance control and on-orbit service

    MA Song-Jing Ph. D. candidate at the School of Astronautics, Nanjing University of Aeronautics and Astronautics. Her research interest covers spacecraft dynamics modeling and control, and satellite mission planning

  • 摘要: 面向空间攻防等任务的航天器通常安装微波、激光等大功率对抗载荷, 未来航天器需要装备大型挠性太阳能帆板. 针对挠性航天器姿态机动过程中存在外部干扰、执行机构饱和及挠性附件振动且挠性模态不易直接测量等问题, 提出带挠性附件航天器的全驱姿态控制方法. 首先, 建立挠性航天器全驱姿态控制模型, 其次基于扩展非线性观测器与努斯鲍姆增益调节设计一种抗饱和的姿态控制鲁棒算法. 将外部扰动、挠性振动和输入饱和函数饱和估计误差作为复合干扰, 采用非线性干扰观测器对其进行有效补偿. 在直接参数设计线性控制参数基础上, 扩张非线性观测器负责对挠性航天器产生的挠性振动进行实时估计和补偿, 努斯鲍姆函数辅助控制器输出力矩避免饱和, 并利用李雅普诺夫方法严格证明闭环系统的稳定性. 最后通过数学仿真验证该方法不仅能够实现执行机构饱和约束条件下的姿态控制, 还能有效抑制挠性结构的振动, 为探索未来带有大型挠性附件航天器姿态控制新的方法提供参考.
  • 图  1  挠性航天器示意图

    Fig.  1  Schematic diagram of the flexible spacecraft

    图  2  全驱姿态控制器控制框图

    Fig.  2  Block diagram of fully actuated system attitude controller

    图  3  挠性航天器前八阶模态振型

    Fig.  3  The first eight modes of flexible spacecraft

    图  4  欧拉角时间响应

    Fig.  4  Euler Angle time response

    图  7  前四阶模态位移时间响应

    Fig.  7  First four order modal displacement response

    图  5  角速度时间响应

    Fig.  5  Angular velocity response

    图  6  系统实际输出力矩

    Fig.  6  Actual output torque of the system

    图  8  挠性非线性干扰

    Fig.  8  Nonlinear flexible vibration interference

    图  9  自适应参数${\boldsymbol{\chi}}$的时间响应

    Fig.  9  Time response of adaptive parameter ${\boldsymbol{\chi}}$

    表  1  仿真参数

    Table  1  Simulation parameters

    物理参数
    转动惯量矩阵$ (\text{kg}\cdot\text{m}^{2}) $ $ {\boldsymbol{J}}=\text{diag}([40,\;150,\;160]) $
    耦合矩阵 $ {\boldsymbol{\delta}}=\begin{bmatrix}1.352\ 3 & 1.278\ 4 & 2.155\ 3\\-1.151\ 9 & 1.017\ 6 & -1.272\ 4\\2.216\ 7 & 1.589\ 1 & -0.832\ 4\\1.236\ 4 & -1.653\ 7 & 1.225\ 1\end{bmatrix} $
    挠性模态数 $ N=4 $
    固有频率(rad/s) $ {\boldsymbol{\Lambda}}=\begin{bmatrix}1.20 & 2.48 & 3.37 & 7.47\end{bmatrix} $
    阻尼比 $ \xi_1 = \xi_2 = \xi_3 = \xi_4 = 0.01 $
    外部干扰矩阵($ \text{N}\cdot \text{m} $) $ d=10^{-4}\begin{bmatrix}3\cos(0.1t)+4\\1.5\sin(0.1t)+3\cos(0.1t)\\3\sin(0.1t)+1\end{bmatrix} $
    下载: 导出CSV

    表  2  各控制器参数

    Table  2  Parameters of controllers

    控制方法 控制律 控制参数
    PD+前馈补偿 $ {\boldsymbol{u}} = {{\boldsymbol{B}}^{ - 1}}({{\boldsymbol{A}}_p}{\boldsymbol{\sigma}} {\rm{ + }}{{\boldsymbol{A}}_d}\dot{{\boldsymbol{\sigma}}} ) - {{\boldsymbol{B}}^{ - 1}}({{\boldsymbol{f}}_{\rm{2}}} + {{\boldsymbol{f}}_{\rm{3}}}) $ $ \begin{array}{l} {{\boldsymbol{A}}_p} = {\rm{diag([ - 0}}{\rm{.12 - 0}}{\rm{.12 - 0}}{\rm{.12])}} \\ {{\boldsymbol{A}}_d} = {\rm{diag([ - 0}}{\rm{.7 - 0}}{\rm{.7 - 0}}{\rm{.7])}} \end{array} $
    TSMC $ {\boldsymbol{u}} = - { {{\beta q} \over p}}{{\boldsymbol{B}}^{ - 1}}{\dot{{\boldsymbol{\sigma}}} ^{{\rm{(2}} - { {p \over q}}{\rm{)}}}} - {{\boldsymbol{B}}^{ - 1}}({{\boldsymbol{f}}_{\rm{2}}} + {{\boldsymbol{f}}_{\rm{3}}}) + \varepsilon \text{sgn} (s) $ $ \beta = 0.8,\;\varepsilon = 0.002,\; p = 5,\;q = 3 $
    FAESO $ {\boldsymbol{u}} {\rm{ = }}{{\boldsymbol{B}}^{ - 1}}{\boldsymbol{Z}}{{\boldsymbol{F}}^2}{{\boldsymbol{V}}^{ - 1}}{[\sigma {\rm{ }}\dot \sigma ]^{\rm{T}}} - {{\boldsymbol{B}}^{ - 1}}{\rm{(}}{\hat {{\boldsymbol{z}}}_3}{\rm{ + }}{{\boldsymbol{f}}_1}{\rm{)}} $ $ \begin{array}{c} {\boldsymbol{F}} = \left[ \begin{array}{l} {\rm{diag}}([ - 0.09,\; - 0.1,\; - 0.08])\quad\ {{\boldsymbol{O}}_{3 \times 3}} \\ {{\boldsymbol{O}}_{3 \times 3{\rm{ }}}}\quad {\rm{diag}}([ - 0.35,\; - 0.4,\; - 0.35]) \end{array} \right] \\ {\boldsymbol{Z}} = [{{\boldsymbol{I}}_{3 \times 3}}{\rm{ }}\quad\ {{\boldsymbol{I}}_{3 \times 3}}],\;kv = 0.8,\;k = 0.6 \\ \left[\beta_1\ \beta_2\ \beta_3\right]=\left[50\ 150\ 500\right],\;{{\boldsymbol{z}}_{\rm{1}}} = {\bf{0}},\; {{\boldsymbol{z}}_{\rm{2}}} = {\bf{0}},\; {{\boldsymbol{z}}_{\rm{3}}} = {\bf{0}} \end{array} $
    本文方法 式(15)$ \sim $式(17) $ \begin{array}{c} {\boldsymbol{F}} = \left[ \begin{array}{l} {\rm{diag}}([ - 0.09,\; - 0.1,\; - 0.08])\quad\ {{\boldsymbol{O}}_{3 \times 3}}\\{{\boldsymbol{O}}_{3 \times 3{\rm{ }}}}\quad\ {\rm{diag}}([ - 0.35,\; - 0.4,\; - 0.35]) \end{array} \right]\\{\boldsymbol{P}} = \left[ {\begin{array}{*{20}{c}} {{\rm{diag}}([35,\;35,\;35])\quad {\rm{diag}}([80,\;80,\;70])}\\{{\rm{diag}}([80,\;80,\;80])\quad {\rm{diag}}([150,\;150,\;150])} \end{array}} \right]\\kv = 0.8,\;k = 0.6,\;\varsigma = 0.6,\; {\boldsymbol{Z}} = [{{\boldsymbol{I}}_{3 \times 3}}{\rm{ }}\ {{\boldsymbol{I}}_{3 \times 3}}],\; {\boldsymbol{\chi}} (0){\rm{ = }}{\bf{0}}\\ \left[\beta_1\ \beta_2\ \beta_3\right]=\left[50\ 150\ 500\right],\;{{\boldsymbol{z}}_{\rm{1}}} = {\bf{0}},\; {{\boldsymbol{z}}_{\rm{2}}} = {\bf{0}},\; {{\boldsymbol{z}}_{\rm{3}}} = {\bf{0}} \end{array} $
    下载: 导出CSV
  • [1] 杨广华, 王强, 陈国玖. 美国“星链”低轨星座军事应用前景探析. 中国航天, 2022(09): 60−63

    Yang G, Wang Q, Chen J. Future Military Application of the US Starlink LEO Constellation. Aerospace China, 2022(09): 60−63
    [2] Gu D, Liu G, Duan G. Parametric Control to A Type of Quasi-linear Second-order Systems via Output Feedback. Int. J. Control, 2019, 92(2): 291−302 doi: 10.1080/00207179.2017.1350885
    [3] Yao Q, Li Q, Huang J, et al. PDE-based Prescribed Performance Adaptive Attitude and Vibration Control of Flexible Spacecraft. Aerospace Science and Technology, 2023, 141: 108504 doi: 10.1016/j.ast.2023.108504
    [4] Li A, Liu M, Shi Y. Adaptive Sliding Mms Based on the Takagi-Sugeno Fuzzy Modelling Method. Acta Astronautica, 2020, 175: 570−581 doi: 10.1016/j.actaastro.2020.05.041
    [5] Ghorbani H, Vatankhah R, Farid M. Adaptive Nonsingular Fast Terminal Sliding Mode Controller Design for A Smart Flexible Satellite in General Planar Motion. Aerospace Science and Technology, 2021, 119: 107100 doi: 10.1016/j.ast.2021.107100
    [6] Hasan M, Haris M, Qin S. Flexible Spacecraft's Active Fault-tolerant and Anti-unwinding Attitude Control with Vibration Suppression. Aerospace Science and Technology, 2022, 122: 107397 doi: 10.1016/j.ast.2022.107397
    [7] Xiao Y, De Ruiter A, Ye D, et al. Adaptive Fault-tolerant Attitude Tracking Control for Flexible Spacecraft with Guaranteed Performance Bounds. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(3): 1922−1940
    [8] 张慧凤, 董乐伟, 魏新江. 一类带有输入饱和的随机系统抗干扰控制. 自动化学报, 2021, 47(6): 1453−1459

    Zhang H, Dong L, Wei X. Anti-disturbance Control for A Class of Stochastic Systems with Input Saturation. Acta Automatica Sinica, 2021, 47(6): 1453−1459
    [9] 高阳, 吴文海, 王子健. 具有输入约束和输出噪声的不确定系统级联线性自抗扰控制. 自动化学报, 2022, 48(3): 843−852

    Gao Y, Wu W, Wang Z. Cascaded Linear Active Disturbance Rejection Control for Uncertain Systems with Input Constraint and Output Noise. Acta Automatica Sinica, 2022, 48(3): 843−852
    [10] 彭秀艳, 贾书丽, 张彪. 一类具有执行器饱和的非线性系统抗饱和方法研究. 自动化学报, 2016, 42(5): 798−804

    Peng X, Jia S, Zhang B. Anti-saturation Method for A Class of Nonlinear Systems with Actuator Saturation. Acta Automatica Sinica, 2016, 42(5): 798−804
    [11] 段广仁. 高阶系统方法—I. 全驱系统与参数化设计. 自动化学报, 2020, 46(7): 1333−1345

    Duan G. High-order System Approaches: I. Fully-actuated Systems and Parametric Design. Acta Automatica Sinica, 2020, 46(7): 1333−1345
    [12] Piltan F, Mirzaei M, Shahriari F, et al. Design Baseline Computed Torque Controller. International Journal of Engineering, 2012, 6(3): 129−141
    [13] Sancak K, Bayraktaroglu. Nonlinear Computed Torque Control of 6-dof Parallel Manipulators. International Journal of Control, Automation and Systems, 2022, 20(7): 2297−2311 doi: 10.1007/s12555-021-0198-6
    [14] 段广仁. 高阶系统方法-II. 能控性与全驱性. 自动化学报, 2020, 46(8): 1571−1581

    Duan G. High-order System Approaches: II. Controllability and Full-actuation. Acta Automatica Sinica, 2020, 46(8): 1571−1581
    [15] Duan G. High-order Fully Actuated System Approaches: Part III. Robust Control and High-order Backstepping. International Journal of Systems Science, 2021, 52(5): 952−971 doi: 10.1080/00207721.2020.1849863
    [16] Duan G. High-order Fully Actuated System Approaches: Part IV. Adaptive Control and High-order Backstepping. International Journal of Systems Science, 2021, 52(5): 972−989 doi: 10.1080/00207721.2020.1849864
    [17] Duan G. High-order Fully Actuated System Approaches: Part V. Robust Adaptive Control. International Journal of Systems Science, 2021, 52(10): 2129−2143 doi: 10.1080/00207721.2021.1879964
    [18] Duan G. High-order Fully Actuated System Approaches: Part VIII. Optimal Control with Application in Spacecraft Attitude Stabilization. International Journal of Systems Science, 2022, 53(1): 54−73 doi: 10.1080/00207721.2021.1937750
    [19] Xiao F, Chen L. Attitude Control of Spherical Liquid-filled Spacecraft Based on High-order Fully Actuated System Approaches. Journal of Systems Science and Complexity, 2022, 35(2): 471−480 doi: 10.1007/s11424-022-2055-y
    [20] Liu X, Chen M, et al. Adaptive Fault-tolerant Control for Nonlinear High-order Fully-actuated Systems. Neurocomputing, 2022, 495: 75−85 doi: 10.1016/j.neucom.2022.04.129
    [21] Zhao Q, Duan G. Fully Actuated System Approach for 6DOF Spacecraft Control Based on Extended State Observer. Journal of Systems Science and Complexity, 2022, 35(2): 604−622 doi: 10.1007/s11424-022-1498-5
    [22] Hu Q, Shao X, Guo L. Adaptive Fault-tolerant Attitude Tracking Control of Spacecraft with Prescribed Performance. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 331−341
    [23] Chen Z. Nussbaum Functions in Adaptive Control with Time-varying Unknown Control Coefficients. Automatica, 2019, 102: 72−79 doi: 10.1016/j.automatica.2018.12.035
    [24] Ioannou P, Sun J. Robust adaptive control. Prentice Hall: Upper Saddle River, NJ, USA, 1996
    [25] Feng Z, Liu M, Cao X. A Fully-actuated System Approach for Spacecraft Attitude Control with Input Saturation. 2023 2nd Conference on Fully Actuated System Theory and Applications (CFASTA), 2023
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 录用日期:  2024-05-30
  • 网络出版日期:  2024-07-01

目录

    /

    返回文章
    返回