2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隐蔽攻击下信息物理系统的安全输出反馈控制

张淇瑞 孟思琪 王兰豪 刘坤 代伟

张淇瑞, 孟思琪, 王兰豪, 刘坤, 代伟. 隐蔽攻击下信息物理系统的安全输出反馈控制. 自动化学报, 2024, 50(7): 1001−1010 doi: 10.16383/j.aas.c220893
引用本文: 张淇瑞, 孟思琪, 王兰豪, 刘坤, 代伟. 隐蔽攻击下信息物理系统的安全输出反馈控制. 自动化学报, 2024, 50(7): 1001−1010 doi: 10.16383/j.aas.c220893
Zhang Qi-Rui, Meng Si-Qi, Wang Lan-Hao, Liu Kun, Dai Wei. Secure output-feedback control for cyber-physical systems under stealthy attacks. Acta Automatica Sinica, 2024, 50(7): 1001−1010 doi: 10.16383/j.aas.c220893
Citation: Zhang Qi-Rui, Meng Si-Qi, Wang Lan-Hao, Liu Kun, Dai Wei. Secure output-feedback control for cyber-physical systems under stealthy attacks. Acta Automatica Sinica, 2024, 50(7): 1001−1010 doi: 10.16383/j.aas.c220893

隐蔽攻击下信息物理系统的安全输出反馈控制

doi: 10.16383/j.aas.c220893
基金项目: 江苏省自然科学基金(BK20231062, BK20200086), 中央高校基本科研业务费专项资金(2023QN1074), 国家自然科学基金(62373361, 61973306, 62273041, 52304309), 流程工业综合自动化国家重点实验室联合开放基金(2020-KF-21-10, 2021-KF-21-05), 矿冶过程自动控制技术国家重点实验室开放基金(BGRIMM-KZSKL-2022-7), 江苏省研究生科研与实践创新计划(KYCX23_2717), 中国矿业大学研究生创新计划项目(2023WLJCRCZL117)资助
详细信息
    作者简介:

    张淇瑞:中国矿业大学信息与控制工程学院副教授. 主要研究方向为信息物理系统的脆弱性分析, 安全控制和隐私保护. E-mail: qiruizhang@cumt.edu.cn

    孟思琪:中国矿业大学信息与控制工程学院硕士研究生. 主要研究方向为信息物理系统的安全控制. E-mail: siqimeng@cumt.edu.cn

    王兰豪:中国矿业大学国家煤加工与洁净化工程技术研究中心副教授. 主要研究方向为复杂工业过程的工艺参数检测、优化决策与智能控制. 本文通信作者. E-mail: wanglanhao888@163.com

    刘坤:北京理工大学自动化学院研究员. 主要研究方向为网络化控制理论与应用, 复杂网络系统安全. E-mail: kunliubit@bit.edu.cn

    代伟:中国矿业大学人工智能研究院教授. 主要研究方向为复杂工业过程建模、运行优化与控制. E-mail: weidai@cumt.edu.cn

Secure Output-feedback Control for Cyber-physical Systems Under Stealthy Attacks

Funds: Supported by Natural Science Foundation of Jiangsu Province (BK20231062, BK20200086), Fundamental Research Funds for the Central Universities(2023QN1074), National Natural Science Foundation of China (62373361, 61973306, 62273041, 52304309), Joint Open Foundation of State Key Laboratory of Synthetical Automation for Process Industries (2020-KF-21-10, 2021-KF-21-05), Open Foundation of State Key Laboratory of Process Automation in Mining and Metallurgy (BGRIMM-KZSKL-2022-7), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_2717), and Graduate Innovation Program of China University of Mining and Technology (2023WLJCRCZL117)
More Information
    Author Bio:

    ZHANG Qi-Rui Associate professor at the School of Information and Control Engineering, China University of Mining and Technology. His research interest covers vulnerability analysis of cyber-physical systems, secure control, and privacy protection

    MENG Si-Qi Master student at the School of Information and Control Engineering, China University of Mining and Technology. Her main research interest is secure control of cyber-physical systems

    WANG Lan-Hao Associate professor at National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology. His research interest covers process parameter detection, optimal decision making, and intelligent control of complex industrial process. Corresponding author of this paper

    LIU Kun Professor at the School of Automation, Beijing Institute of Technology. His research interest covers theory and applications of networked control, and security of complex networked systems

    DAI Wei Professor at the Artificial Intelligence Research Institute, China University of Mining and Technology. His research interest covers modeling, operational optimization and control for complex industrial process

  • 摘要: 研究了受到隐蔽攻击的信息物理系统(Cyber-physical system, CPS)安全控制问题. 采用KL (Kullback-Leibler)散度描述攻击的隐蔽性, 并设计动态输出反馈控制器, 使系统可达集始终保持在安全区域内, 其中可达集定义为系统状态以一定概率属于的集合. 首先, 给出隐蔽攻击下检测器残差所在范围的一个外椭球近似集; 其次, 根据该近似集和噪声的范围给出控制器参数与系统椭球形不变可达集的关系; 然后, 通过设计可逆线性变换并构造凸优化问题, 求解安全控制器参数和相应的不变可达集; 最后, 使用弹簧−质量−阻尼系统进行仿真, 验证了所提控制方法的有效性.
  • 图  1  不同abc值下, 参数$\delta $和椭球形不变可达集体积的关系

    Fig.  1  Relationship between$\delta $and volume of ellipsoidal invariant reachable set with different a, b and c

    图  2  不同abc值下, 参数$\alpha $和椭球形不变可达集体积的关系

    Fig.  2  Relationship between$\alpha $and volume of ellipsoidal invariant reachable set with different a, b and c

    图  3  不同abc值下, 系统状态的椭球形不变可达集

    Fig.  3  Ellipsoidal invariant reachable sets of system's state with different a, b and c

    图  4  不同abc值下, 参数$\alpha $和$ {\rm{Tr}}(Y)$的关系

    Fig.  4  Relationship between$\alpha $and$ {\rm{Tr}}(Y)$ with different a, b and c

    图  5  未使用控制器和使用控制器式(5) ~ (6)时系统状态的椭球形不变可达集

    Fig.  5  Ellipsoidal invariant reachable set of system's state without controller and with controller (5) ~ (6)

  • [1] Derler P, Lee E A, Vincentelli A S. Modeling cyber-physical systems. Proceedings of the IEEE, 2012, 100(1): 13−28 doi: 10.1109/JPROC.2011.2160929
    [2] 李洪阳, 魏慕恒, 黄洁, 邱伯华, 赵晔, 骆文城, 等. 信息物理系统技术综述. 自动化学报, 2019, 45(1): 37−50 doi: 10.16383/j.aas.2018.c180362

    Li Hong-Yang, Wei Mu-Heng, Huang Jie, Qiu Bo-Hua, Zhao Ye, Luo Wen-Cheng, et al. Review of information physical systems technology. Acta Automatica Sinica, 2019, 45(1): 37−50 doi: 10.16383/j.aas.2018.c180362
    [3] Kim S, Park K J, Lu C Y. A survey on network security for cyber-physical systems: from threats to resilient design. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1534−1573
    [4] 刘烃, 田决, 王稼舟, 吴宏宇, 孙利民, 周亚东, 等. 信息物理融合系统综合安全威胁与防御研究. 自动化学报, 2019, 45(1): 5−24

    Liu Ting, Tian Jue, Wang Jia-Zhou, Wu Hong-Yu, Sun Li-Min, Zhou Ya-Dong, et al. Research on integrated security threat and defense of information physical fusion system. Acta Automatica Sinica, 2019, 45(1): 5−24
    [5] Duo W L, Zhou M C, Abusorrah A, Valente J, Faisal M, Ruths J, et al. A survey of cyber attacks on cyber physical systems: Recent advances and challenges. IEEE/CAA Journal of Automatica Sinica, 2022, 9(5): 784−800 doi: 10.1109/JAS.2022.105548
    [6] Giraldo J, Urbina D, Cardenas A. A survey of physics-based attack detection in cyber-physical systems. ACM Computing Surveys, 2018, 51(4): Article No. 76
    [7] Tan S, Guerrero J M, Xie P L, Han R K, Vasquez J C. Brief survey on attack detection methods for cyber-physical systems. IEEE Systems Journal, 2020, 14(4): 5329−5339 doi: 10.1109/JSYST.2020.2991258
    [8] 杨超群, 张恒. 基于CBMeMBer滤波器的多攻击检测方法. 控制工程, 2022, 29(6): 1033−1039

    Yang Chao-Qun, Zhang Heng. Multi-attack detection approach based on CBMeMBer filt. Control Engineering of China, 2022, 29(6): 1033−1039
    [9] 穆超, 王鑫, 杨明, 张恒, 陈振娅, 吴晓明. 面向物联网设备固件的硬编码漏洞检测方法. 网络与信息安全学报, 2022, 8(5): 98−110

    Mu Chao, Wang Xin, Yang Ming, Zhang Heng, Chen Zhen-Ya, Wu Xiao-Ming. Hard-coded vulnerability detection approach for IoT device firmware. Chinese Journal of Network and Information, 2022, 8(5): 98−110
    [10] Zhang Q R, Liu K, Teixeira A, Li Y Z, Chai S C, Xia Y Q. An online Kullback-Leibler divergence-based stealthy attack against cyber-physical systems. IEEE Transactions on Automatic Control, 2022, 68(6): 3672−3679 doi: 10.1109/TAC.2022.3192201
    [11] Zhang Q R, Liu K, Xia Y Q, Ma A Y. Optimal stealthy deception attack against cyber-physical systems. IEEE Transactions on Cybernetics, 2020, 50(9): 3963−3972 doi: 10.1109/TCYB.2019.2912622
    [12] Zhang Q R, Liu K, Han D Y, Su G Z, Xia Y Q. Design of stealthy deception attacks with partial system knowledge. IEEE Transactions on Automatic Control, 2023, 68(2): 1069−1076 doi: 10.1109/TAC.2022.3146079
    [13] Guo Z Y, Shi D W, Johansson K H, Shi L. Worst-case stealthy innovation-based linear attack on remote state estimation. Automatica, 2018, 89: 117−124 doi: 10.1016/j.automatica.2017.11.018
    [14] Mo Y L, Sinopoli B. False data injection attacks in control systems. In: Proceedings of the 1st Workshop on Secure Control Systems. Stockholm, Sweden: IEEE, 2010. 1−6
    [15] Kwon C, Liu W Y, Hwang I. Analysis and design of stealthy cyber attacks on unmanned aerial systems. Journal of Aerospace Information Systems, 2014, 11(8): 525−539 doi: 10.2514/1.I010201
    [16] Sui T J, Mo Y L, Marelli D, Sun X M, Fu M Y. The vulnerability of cyber-physical system under stealthy attacks. IEEE Transactions on Automatic Control, 2020, 66(2): 637−650
    [17] Sui T J, Sun X M. The vulnerability of distributed state estimator under stealthy attacks. Automatica, 2021, 133: Article No. 109869 doi: 10.1016/j.automatica.2021.109869
    [18] Hu L, Wang Z D, Han Q L, Liu X H. State estimation under false data injection attacks: Security analysis and system protection. Automatica, 2018, 87: 176−183 doi: 10.1016/j.automatica.2017.09.028
    [19] Xu W Y, Wang Z D, Hu L, Kurths J. State estimation under joint false data injection attacks: Dealing with constraints and insecurity. IEEE Transactions on Automatic Control, 2022, 62 (2): 6745−6753
    [20] Jovanov I, Pajic M. Relaxing integrity requirements for attack-resilient cyber-physical systems. IEEE Transactions on Automatic Control, 2019, 64(12): 4843−4858 doi: 10.1109/TAC.2019.2898510
    [21] Zhang T Y, Ye D. False data injection attacks with complete stealthiness in cyber-physical systems: A self-generated approach. Automatica, 2020, 120: Article No. 109117 doi: 10.1016/j.automatica.2020.109117
    [22] Mo Y L, Sinopoli B. On the performance degradation of cyber-physical systems under stealthy integrity attacks. IEEE Transactions on Automatic Control, 2015, 61(9): 2618−2624
    [23] Murguia C, Shames I, Ruths J. Security metrics and synthesis of secure control systems. Automatica, 2020, 115: Article No. 108757 doi: 10.1016/j.automatica.2019.108757
    [24] Kwon C, Hwang I. Reachability analysis for safety assurance of cyber-physical systems against cyber attacks. IEEE Transactions on Automatic Control, 2018, 63(7): 2272−2279 doi: 10.1109/TAC.2017.2761762
    [25] Liu H, Niu B, Qin J H. Reachability analysis for linear discrete-time systems under stealthy cyber attacks. IEEE Transactions on Automatic Control, 2021, 66(9): 4444−4451 doi: 10.1109/TAC.2021.3050549
    [26] Zhang Q R, Liu K, Pang Z H, Xia Y Q, Liu T. Reachability analysis of cyber-physical systems under stealthy attacks. IEEE Transactions on Cybernetics, 2022, 52(6): 4926−4934 doi: 10.1109/TCYB.2020.3025307
    [27] Hashemi N, Ruths J. Co-design for resilience and performance. IEEE Transactions on Control of Network Systems, 2022, 10(3): 1387−1399 doi: 10.1109/TCNS.2022.3229774
    [28] Bai C Z, Pasqualetti F, Gupta V. Data-injection attacks in stochastic control systems: Detectability and performance trade-offs. Automatica, 2017, 82: 251−260 doi: 10.1016/j.automatica.2017.04.047
    [29] Fang C R, Qi Y F, Chen J M, Tan R, Zheng W X. Stealthy actuator signal attacks in stochastic control systems: Performance and limitations. IEEE Transactions on Automatic Control, 2020, 65(9): 3927−3934 doi: 10.1109/TAC.2019.2950072
    [30] Kullback S. Information Theory and Statistics. Chelmsford: Courier Corporation, 1997.
    [31] Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for Industry and Applied Mathematics, 1994.
    [32] Diananda P H. A simple proof of the arithmetic mean geometric mean inequality. The American Mathematical Monthly, 1960, 67(10): Article No. 1007 doi: 10.2307/2309236
    [33] 夏元清. 云控制系统及其面临的挑战. 自动化学报, 2016, 42(1): 1−12

    Xia Yuan-Qing. Cloud control systems and their challenges. Acta Automatica Sinica, 2016, 42(1): 1−12
  • 加载中
计量
  • 文章访问数:  719
  • HTML全文浏览量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 录用日期:  2023-03-21
  • 网络出版日期:  2023-04-11

目录

    /

    返回文章
    返回