2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器位姿运动一体化直接自适应容错控制研究

马亚杰 姜斌 任好

马亚杰, 姜斌, 任好. 航天器位姿运动一体化直接自适应容错控制研究. 自动化学报, 2023, 49(3): 678−686 doi: 10.16383/j.aas.c220501
引用本文: 马亚杰, 姜斌, 任好. 航天器位姿运动一体化直接自适应容错控制研究. 自动化学报, 2023, 49(3): 678−686 doi: 10.16383/j.aas.c220501
Ma Ya-Jie, Jiang Bin, Ren Hao. Adaptive direct fault-tolerant control design for spacecraft integrated attitude and orbit system. Acta Automatica Sinica, 2023, 49(3): 678−686 doi: 10.16383/j.aas.c220501
Citation: Ma Ya-Jie, Jiang Bin, Ren Hao. Adaptive direct fault-tolerant control design for spacecraft integrated attitude and orbit system. Acta Automatica Sinica, 2023, 49(3): 678−686 doi: 10.16383/j.aas.c220501

航天器位姿运动一体化直接自适应容错控制研究

doi: 10.16383/j.aas.c220501
基金项目: 国家自然科学基金 (62020106003, 62273177, U22B6001), 江苏省自然科学基金 (BK20222012, BK20211566), 高等学校学科创新引智基金 (B20007), 机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题基金 (MCMS-I-0121G03), 航空基金 (20200007018001)资助
详细信息
    作者简介:

    马亚杰:南京航空航天大学自动化学院教授. 主要研究方向为自适应故障诊断与容错控制及应用. E-mail: yajiema@nuaa.edu.cn

    姜斌:南京航空航天大学自动化学院教授. 主要研究方向为智能故障诊断与容错控制及应用. 本文通信作者. E-mail: binjiang@nuaa.edu.cn

    任好:南京航空航天大学自动化学院博士研究生. 主要研究方向为自适应容错控制及应用. E-mail: haoren@nuaa.edu.cn

Adaptive Direct Fault-tolerant Control Design for Spacecraft Integrated Attitude and Orbit System

Funds: Supported by National Natural Science Foundation of China (62020106003, 62273177, U22B6001), Natural Science Foundation of Jiangsu Province (BK20222012, BK20211566), Programme of Introducing Talents of Discipline to Universities of China (B20007), State Key Laboratory of Mechanical Structural Mechanics and Control (Nanjing University of Aeronautics and Astronautics) Independent Research Project (MCMS-I-0121G03), and Aviation Fund (20200007018001)
More Information
    Author Bio:

    MA Ya-Jie Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers adaptive fault diagnosis and fault-tolerant control and their applications

    JIANG Bin Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers intelligent fault diagnosis and fault-tolerant control and their applications. Corresponding author of this paper

    REN Hao Ph.D. candidate at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. Her research interest covers adaptive fault-tolerant control and its applications

  • 摘要: 针对航天器近距离操作过程中追踪航天器位姿控制系统执行器故障问题, 提出了一种直接自适应容错控制方法, 保证了追踪航天器在发生执行器故障下的自身稳定性和对目标航天器位姿状态的渐近跟踪性能. 基于对偶四元数的航天器位姿一体化控制系统模型, 首先, 假设故障已知, 设计标称控制信号; 然后, 设计自适应更新律对标称控制信号中的未知参数进行估计, 构成自适应控制信号; 最后, 利用多Lyapunov函数对多故障模式下的系统性能进行分析. 仿真结果表明了所提方法的有效性.
  • 图  1  航天器近距离操作坐标系示意图

    Fig.  1  Coordinate system of spacecraft proximity operations

    图  2  运动学状态误差$ {\boldsymbol{e}}_1$

    Fig.  2  Kinematic state error $ {\boldsymbol{e}}_1$

    图  3  动力学状态误差$ {\boldsymbol{e}}_2$

    Fig.  3  Dynamic state error $ {\boldsymbol{e}}_2$

    图  4  对偶控制力矩$ {\hat{\boldsymbol{u}}}$与对偶控制信号$ {\hat{\boldsymbol{v}}}$

    Fig.  4  Dual control torque $ {\hat{\boldsymbol{u}}}$ and dual control signal $ {\hat{\boldsymbol{v}}}$

  • [1] 郑重, 李鹏, 钱默抒. 具有角速度和输入约束的航天器姿态协同控制. 自动化学报, 2021, 47(6): 1444-1452

    Zheng Zhong, Li Peng, Qian Mo-Shu. Spacecraft attitude coordination control with angular velocity and input constraints. Acta Automatica Sinca, 2021, 47(6): 1444-1452
    [2] 耿云海, 金荣玉, 陈雪芹, 李冬柏. 执行机构故障的航天器姿态容错控制. 宇航学报, 2017, 38(11): 1186-1194 doi: 10.3873/j.issn.1000-1328.2017.11.007

    Geng Yun-Hai, Jin Rong-Yu, Chen Xue-Qin, Li Dong-Bai. Spacecraft attitude fault tolerant control with actuator fault, Journal of Astronautics, 2017, 38(11): 1186-1194 doi: 10.3873/j.issn.1000-1328.2017.11.007
    [3] Wang D, Fu F, Li W, Tu Y, Liu C, Liu W. A review of the diagnosability of control systems with applications to spacecraft. Annual Reviews in control, 2020, 49: 212-229 doi: 10.1016/j.arcontrol.2020.03.004
    [4] Fu F, Xue T, Wu Z, Wang D. A fault diagnosability evaluation method for dynamic systems without distribution knowledge. IEEE Transactions on Cybernetics, 2022, 52(6): 5113-5123 doi: 10.1109/TCYB.2020.3027549
    [5] 王大轶, 屠园园, 刘成瑞, 何英姿, 李文博. 航天器控制系统可重构性的内涵与研究综述. 自动化学报, 2017, 43(10): 1687-1702

    Wang Da-Yi, Tu Yuan-Yuan, Liu Cheng-Rui, He Ying-Zi, Li Wen-Bo. Connotation and research of reconfigurability for spacecraft control systems: a review. Acta Automatica Sinca, 2017, 43(10): 1687-1702
    [6] 文利燕, 陶钢, 姜斌, 杨杰. 非线性动态突变系统的多模型自适应执行器故障补偿设计. 自动化学报, 2022, 48(1): 207-222 doi: 10.16383/j.aas.c200318

    Wen Li-Yan, Tao Gang, Jiang Bin, Yang Jie. A multiple-model based adaptive actuator failure compensation scheme for nonlinear systems with dynamic mutations. Acta Automatica Sinica, 2022, 48(1): 207-222 doi: 10.16383/j.aas.c200318
    [7] 张绍杰, 吴雪, 刘春生. 执行器故障不确定非线性系统最优自适应输出跟踪控制. 自动化学报, 2018, 44(12): 2188-2197

    Zhang Shao-Jie, Wu Xue, Liu Chun-Sheng. Optimal adaptive output tracking control for a class of uncertain nonlinear systems with actuator failures. Acta Automatica Sinica, 2018, 44(12): 2188-2197
    [8] 张福桢, 金磊. 使用SGCMGs航天器滑模姿态容错控制. 北京航空航天大学学报, 2017, 43(4): 806-813

    Zhang Fu-Zhen, Jin Lei. Sliding-mode fault-tolerant attitude control for spacecraft using SGCMGs. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(4): 806-813.
    [9] Zhu X, Zheng H, Chen J. Dual quaternion-based adaptive iterative learning control for flexible spacecraft rendezvous. Acta Astronautica, 2021, 189: 99-118 doi: 10.1016/j.actaastro.2021.08.040
    [10] 梅亚飞, 廖瑛, 龚轲杰, 罗达. SE(3) 上航天器姿轨耦合固定时间容错控制. 航空学报, 2021, 42(11): 525089-1−14

    Mei Ya-Fei, Liao Ying, Gong Ke-Jie, Luo Da. Fixed-time fault-tolerant control for coupled spacecraft on SE(3). Acta Astronautica et Astronautica Sinca, 2021, 42(11): 525089-1−14
    [11] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述. 宇航学报, 2020, 41(6): 647-656 doi: 10.3873/j.issn.1000-1328.2020.06.002

    Shen Yi, Li Li-Liang, Wang Zhen-Hua. A review of fault diagnosis and fault-tolerant control techniques for spacecraft. Journal of Astronautics, 2020, 41(6): 647-656 doi: 10.3873/j.issn.1000-1328.2020.06.002
    [12] 金小峥, 杨光红, 常晓恒, 车伟伟. 容错控制系统鲁棒H∞和自适应补偿设计. 自动化学报, 2013, 39(1): 31-42 doi: 10.1016/S1874-1029(13)60004-X

    Jin Xiao-Zheng, Yang Guang-Hong, Chang Xiao-Heng, Che Wei-Wei. Robust fault-tolerant H∞ control with adaptive compensation. Acta Automatica Sinica, 2013, 39(1): 31-42 doi: 10.1016/S1874-1029(13)60004-X
    [13] Xiao B, Hu Q, Singhose W. Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking. Journal of Guidance, Control, and Dynamics, 2013, 36: 1565-1575 doi: 10.2514/1.59839
    [14] Yao X, Tao G, Ma Y, Jiang B. Adaptive actuator failure compensation design for spacecraft attitude control. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3): 1021-1034 doi: 10.1109/TAES.2016.130802
    [15] Gui H, Ruiter A. Adaptive fault-tolerant spacecraft pose tracking with control allocation. IEEE Transactions on Control Systems Technology, 2019, 27(2): 479-494 doi: 10.1109/TCST.2017.2771374
    [16] Xia K, Zou Y. Adaptive saturated fault-tolerant control for spacecraft rendezvous with redundancy thrusters. IEEE Transactions on Control Systems Technology, 2021, 29(2): 502-513 doi: 10.1109/TCST.2019.2950399
    [17] Xia K, Zou Y. Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information. Nonlinear Dynamics, 2020, 100: 2521-2535 doi: 10.1007/s11071-020-05634-2
    [18] 胡庆雷, 姜博严, 石忠. 基于新型终端滑模的航天器执行器故障容错姿态控制. 航空学报, 2014, 35(1): 249-258

    Hu Qing-Lei, Jiang Bo-Yan, Shi-Zhong. Novel terminal sliding mode based fault tolerant attitude control for spacecraft under actuator faults. Acta Astronautica et Astronautica Sinca, 2014, 35(1): 249-258
    [19] 于彦波, 胡庆雷, 董宏洋, 马广富. 执行器故障与饱和受限的航天器滑模容错控制. 航空学报, 2016, 48(4): 20-25

    Yu Yan-Bo, Hu Qing-Lei, Dong Hong-Yang, Ma Guang-Fu. Sliding mode fault tolerant control for spacecraft under actuator fault and saturation. Journal of Harbin Institute of Technology, 2016, 48(4): 20-25
    [20] Jiang B, Hu Q, Friswell M. Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1576-1586 doi: 10.1109/TAES.2016.140406
    [21] Li Q, Yuan J, Sun C. Robust fault-tolerant saturated control for spacecraft proximity operations with actuator saturation and faults. Advances in Space Research, 2019, 63(5): 1541-1553 doi: 10.1016/j.asr.2018.11.004
    [22] Wang Y, Liu K, Ji H. Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dynamics, 2022, 108(1): 207-222 doi: 10.1007/s11071-021-07182-9
    [23] Philip N, Ananthasayanam M. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft. Acta Astronautica, 2003, 52(7): 511-522 doi: 10.1016/S0094-5765(02)00125-X
    [24] Hu Q, Shao X, Chen W. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode. IEEE Transactions on Aerospace and electronic Systems, 2018, 54(1): 2-17 doi: 10.1109/TAES.2017.2729978
    [25] Sun L, Huo W, Jiao Z. Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Transactions on Industrial Electronics, 2017, 64(1): 480-492 doi: 10.1109/TIE.2016.2609399
    [26] Sveier A, Myhre T, Egeland O. Pose estimation with dual quaternions and iterative closest point. Advances in Computing and Communications, 2018: 1913-1920
    [27] Dong H, Hu Q, Friswell M, Ma G. Dual-quaternion-based fault-tolerant control for spacecraft tracking With finite-time convergence. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1231-1242
    [28] Yang J, Stoll E. Adaptive sliding mode control for spacecraft proximity operations based on dual quaternions. Journal of Guidance, Control, and Dynamics, 2019, 42(11): 2356-2368 doi: 10.2514/1.G004435
    [29] Geng Y, Biggs J, Li C. Pose regulation via the dual unitary group: an application to spacecraft rendezvous. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3734-3748 doi: 10.1109/TAES.2021.3090929
    [30] Dong H, Hu Q, Akella M, Mazenc F. Partial lyapunov strictification: dual-quaternion-based observer for 6-DOF tracking control. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2453-2469 doi: 10.1109/TCST.2018.2864723
    [31] Ma Y, Jiang B, Tao G, Cheng Y. A direct adaptive actuator failure compensation scheme for satellite attitude control systems. Journal of Aerospace Engineering, 2014, 228(4): 542-556
    [32] Ma Y, Jiang B, Tao G, Cheng Y. Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft. IEEE Transactions on Aerospace and Electronic System, 2015, 51(2): 1053-1068 doi: 10.1109/TAES.2014.130032
    [33] Clifford W. A Preliminary Sketch of Biquaternions. Proceedings of the London Mathematics Society, 1873, 1-4(1): 381-395
    [34] Study E. Von den Bewegungen und Umlegungen. Mathematische Annalen, 1891: 441-565
  • 加载中
图(4)
计量
  • 文章访问数:  2895
  • HTML全文浏览量:  184
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-03-20

目录

    /

    返回文章
    返回