2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

信息能源系统的信-物融合稳定性分析

王睿 孙秋野 张化光

王睿, 孙秋野, 张化光. 信息能源系统的信-物融合稳定性分析. 自动化学报, 2021, 47(x): 1−10 doi: 10.16383/j.aas.c210480
引用本文: 王睿, 孙秋野, 张化光. 信息能源系统的信-物融合稳定性分析. 自动化学报, 2021, 47(x): 1−10 doi: 10.16383/j.aas.c210480
Wang Rui, Sun Qiu-Ye, Zhang Hua-Guang. Stability analysis of cyber-physical fusion in cyber-energy systems. Acta Automatica Sinica, 2021, 47(x): 1−10 doi: 10.16383/j.aas.c210480
Citation: Wang Rui, Sun Qiu-Ye, Zhang Hua-Guang. Stability analysis of cyber-physical fusion in cyber-energy systems. Acta Automatica Sinica, 2021, 47(x): 1−10 doi: 10.16383/j.aas.c210480

信息能源系统的信-物融合稳定性分析

doi: 10.16383/j.aas.c210480
基金项目: 国家自然科学基金(U20A20190, 62073065), 国家重点研发计划(2018YFA0702200)资助
详细信息
    作者简介:

    王睿:东北大学信息科学与工程学院讲师. 主要研究方向为能源互联网中分布式电源的协同优化及其电磁时间尺度稳定性分析. E-mail: 1610232@stu.neu.edu.cn

    孙秋野:东北大学信息科学与工程学院教授. 主要研究方向为网络控制技术,分布式控制技术,分布式优化分析及其在能源互联网,微网,配电网等领域相关应用. 本文通信作者. E-mail: sunqiuye@mail.neu.edu.cn

    张化光:东北大学信息科学与工程学院教授. 主要研究方向为自适应动态规划,模糊控制,网络控制,混沌控制. E-mail: zhanghuaguang@mail.neu.edu.cn

Stability Analysis of Cyber-Physical Fusion in Cyber-Energy Systems

Funds: Supported by National Natural Science Foundation of P. R. China (U20A20190, 62073065), National Key Research and Development Program of China(2018YFA0702200).
More Information
    Author Bio:

    WANG Rui Lecturer at the School of Information Science and Engineering, Northeastern University. His research interest covers collaborative optimization of distributed generation and its stability analysis of electromagnetic timescale in energy internet

    SUN Qiu-Ye Professor at the School of Information Science and Engineering, Northeastern University. His research interest covers network control technology, distributed control technology, distributed optimization analysis and various applications in energy internet, microgrid, power distribution network. Corresponding author of this paper

    ZHANG Hua-Guang Professor at the School of Information Science and Engineering, Northeastern University. His research interest covers adaptive dynamic programming, fuzzy control, network control, and chaos control

  • 摘要: 尽管信息物理系统的稳定性已经得到了广泛的研究, 但大部分的学者皆关注于通信网络延时或攻击下的信息物理系统的稳定性问题, 无网络通信的信息物理系统的信物融合稳定性分析策略亟待提出. 其中, 内嵌数字控制系统的并网逆变器系统是一种最简单、最典型的信息能源系统. 同时, 从效率的角度出发, 逆变器的开关/采样频率总是选择尽可能低的频率, 其势必产生系统固有延迟时间(控制理论中称为时间延迟). 这种延迟时间往往容易引起系统的低频/次同步振荡, 弱电网将加剧此现象. 为此, 本文提出了一种信息能源系统的信-物融合稳定性分析技术. 首先, 基于柏德近似方法, 建立了具有等效延迟时间的信息物理系统阻抗模型. 该等效延迟时间由三部分组成, 即信息/物理层的采样延迟时间、信息层的计算延迟时间和物理层的脉宽调制(Pulsewidth modulation, PWM)延迟时间, 其有效地反映了信息-物理相互融合作用的影响. 进而设计了稳定禁止区域判据, 利用空间映射使开关/采样频率求解过程转化为Hurwitz矩阵辨识问题. 在这些空间映射的基础上, 最小开关/采样频率通过自适应步长搜索算法获得. 最后, 仿真和实验结果验证了该方法的有效性.
    1)  收稿日期 2021-06-02 录用日期 2021-10-18 Manuscript received June 2, 2021; accepted October 18, 2021 国家自然科学基金 (U20A20190, 62073065), 国家重点研发计划 (2018YFA0702200) 资助 Supported by National Natural Science Foundation of P. R. China (U20A20190, 62073065), National Key Research and Development Program of China(2018YFA0702200). 本文责任编委  Recommended by Associate Editor 1. 东北大学信息科学与工程学院 沈阳 110819 2. 东北大学流程工业综合自动化国家重点实验室 沈阳 110819 1. College of Information Science and Engineering, Northeast-
    2)  ern University, Shenyang 110819    2. State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang 110819
  • 图  1  内嵌数字控制系统的并网逆变器系统

    Fig.  1  Grid connected inverter with digital control system

    图  2  互联系统戴维南等效电路

    Fig.  2  Thevenin equivalent circuit of interconnected system

    图  3  时间延时构成

    Fig.  3  Time-delay components

    图  4  稳定禁止判据

    Fig.  4  Stability forbidden criterion

    图  5  稳定运行区域

    Fig.  5  Stability operation region

    图  6  稳定运行区域集合

    Fig.  6  Set of stability operation regions

    图  7  $ {L_{\min }} $$ {T_{\max }} $的关系曲线

    Fig.  7  Relationship curve between $ {L_{\min }} $ and $ {T_{\max }} $

    图  8  无穷范数判据

    Fig.  8  Infinite norm criterion

    图  9  IGBT开关频率4 kHz下电压波形

    Fig.  9  Voltage waveform under 4 kHz of IGBT

    图  10  IGBT开关频率3.5 kHz下电压波形

    Fig.  10  Voltage waveform under 3.5 kHz of IGBT

    图  11  IGBT开关频率3 kHz下电压波形

    Fig.  11  Voltage waveform under 3 kHz of IGBT

    图  12  IGBT开关频率2 kHz下电压波形

    Fig.  12  Voltage waveform under 2 kHz of IGBT

    图  13  半实物测试系统图

    Fig.  13  Hardware in the loop test system diagram

    图  14  IGBT开关频率4 kHz下实验电压波形

    Fig.  14  Experimental voltage waveform under 4 kHz of IGBT

    图  15  IGBT开关频率3.5 kHz下实验电压波形

    Fig.  15  Experimental voltage waveform under 3.5 kHz of IGBT

    图  16  IGBT开关频率3 kHz下实验电压波形

    Fig.  16  Experimental voltage waveform under 3 kHz of IGBT

    表  1  仿真系统参数表

    参数数值
    电压控制器$ G_v^{inv} = 1 + 8/s $
    电流控制器$ G_c^{inv} = 4 + 150/s $
    母线电压700 V
    额定电压220 V
    额定频率50 Hz
    截止频率5 Hz
    滤波器电容600 μF
    滤波器电感6 mH
    下载: 导出CSV
  • [1] 杨涛, 柴天佑. 分布式协同优化的研究现状与展望. 中国科学: 技术科学, 2020, 50(11): 1414-1425 doi: 10.1360/SST-2020-0040

    Yangtao, Chai Tianyou. Research status and prospects of distributed collaborative optimization. SCIENTIA SINICA Technologica, 2020, 50(11): 1414-1425 doi: 10.1360/SST-2020-0040
    [2] 孙长银, 吴国政, 王志衡, 等. 自动化学科面临的挑战. 自动化学报, 2021, 47(02): 464-474

    Sun Changyin, Wu Guozheng, Wang Zhiheng, et al. On Challenges in Automation Science and Technology. ACTA AUTOMATICA SINICA, 2021, 47(02): 464-474
    [3] 原豪男, 郭戈. 交通信息物理系统中的车辆协同运行优化调度. 自动化学报, 2019, 45(01): 143-152

    Yuan Haonan, Guo Ge. Vehicle Cooperative Optimization Scheduling in Transportation Cyber Physical Systems. ACTA AUTOMATICA SINICA, 2019, 39(14): 4015-4025
    [4] H. Georg, S. C. Müller, C. Rehtanz, et al. Analyzing Cyber-Physical Energy Systems: The INSPIRE Cosimulation of Power and ICT Systems Using HLA. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2364-2373 doi: 10.1109/TII.2014.2332097
    [5] 杨飞生, 汪璟, 潘泉, 康沛沛. 网络攻击下信息物理融合电力系统的弹性事件触发控制[J]. 自动化学报, 2019, 45(01): 110-119.

    Yang Feisheng, Wang Jing, Pan Quan, Kang Peipei. Resilient Event-triggered Control of Grid Cyber-physical Systems Against Cyber Attack. ACTA AUTOMATICA SINICA, 2019, 45(01): 110-119.
    [6] B. Satchidanandan, P. R. Kumar. Dynamic Watermarking: Active Defense of Networked Cyber–Physical Systems. Proceedings of the IEEE, 2017, 105(2): 219-240 doi: 10.1109/JPROC.2016.2575064
    [7] Cao Jie, Liu Jinliang, Tian Engang, et al. Hybrid-triggered-based security controller design for networked control system under multiple cyber attacks. Information Sciences, 2021, 548(10): 69-84.
    [8] D. Lv, A. Eslami and S. Cui. Load-Dependent Cascading Failures in Finite-Size Erdes-Rényi Random Networks. IEEE Transactions on Network Science and Engineering, 2017, 4(2): 129-139 doi: 10.1109/TNSE.2017.2685582
    [9] D. J. Miller, Z. Xiang and G. Kesidi. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of the IEEE, 2020, 108(3): 402-433 doi: 10.1109/JPROC.2020.2970615
    [10] L. Xu, Q. Guo, Z. Wang, et al. Modeling of Time-Delayed Distributed Cyber-Physical Power Systems for Small-Signal Stability Analysis. IEEE Transactions on Smart Grid. doi: 10.1109/TSG.2021.3052303
    [11] 张一媚, 董朝宇, 董晓红, 等. 含电动汽车集群调频的信息能源系统谱特征和稳定性评估. 电力系统自动化, 2021, 45(02): 12-20

    Zhang Yimei, Dong Chaoyu, Dong Xiaohong, et al. Spectral Feature and Stability Assessment for Cyber-Energy System with Frequency Regulation of Electric Vehicle Cluster. Automation of Electric Power Systems, 2021, 45(02): 12-20
    [12] R. Wang, Q. Sun, P. Zhang, et al. Reduced-Order Transfer Function Model of the Droop-Controlled Inverter via Jordan Continued-Fraction Expansion. IEEE Transactions on Energy Conversion, 2020, 35(3): 1585-1595 doi: 10.1109/TEC.2020.2980033
    [13] X. He, R. Wang, J. Wu, et al. Nature of power electronics and integration of power conversion with communication for talkative power. Nature Communications, 2020, 11(1): 2479-2490. doi: 10.1038/s41467-020-16262-0
    [14] C. Dong, Q. Xiao, M. Wang, et al. Distorted Stability Space and Instability Triggering Mechanism of EV Aggregation Delays in the Secondary Frequency Regulation of Electrical Grid-Electric Vehicle System. IEEE Transactions on Smart Grid, 2020, 11(6): 5084-5098 doi: 10.1109/TSG.2020.3008333
    [15] M. Rasheduzzaman, J. A. Mueller, J. W. Kimball. Reduced-Order Small-Signal Model of Microgrid Systems. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1292-1305 doi: 10.1109/TSTE.2015.2433177
    [16] L. Luo, S. V. Dhople. Spatiotemporal Model Reduction of Inverter-Based Islanded Microgrids. IEEE Transactions on Energy Conversion, 2014, 29(4): 823-832 doi: 10.1109/TEC.2014.2348716
    [17] F. Dorfler, F. Bullo. Kron Reduction of Graphs With Applications to Electrical Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(1): 150-163 doi: 10.1109/TCSI.2012.2215780
    [18] 王睿, 孙秋野, 张化光. 微电网的电流均衡/电压恢复自适应动态规划策略研究. 自动化学报, 在线

    Wang Rui, Sun Qiuye, Zhang Huaguang. Research on Current Sharing/Voltage Recovery Based Adaptive Dynamic Programming Control Strategy of Microgrids. ACTA AUTOMATICA SINICA, online
    [19] J. Zhou, Peng Shi, Deqiang Gan, et al, Large-Scale Power System Robust Stability Analysis Based on Value Set Approach. IEEE Transactions on Power Systems, 2017, 32(5): 4012-4023 doi: 10.1109/TPWRS.2017.2657642
    [20] W. Wu et al. A Virtual Phase-Lead Impedance Stability Control Strategy for the Maritime VSC–HVDC System. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5475-5486 doi: 10.1109/TII.2018.2804670
    [21] F. Liu, J. Liu, H. Zhang, et al. Stability Issues of Z+Z Type Cascade System in Hybrid Energy Storage System (HESS). IEEE Transactions on Power Electronics, 2014, 29(11): 5846-5859 doi: 10.1109/TPEL.2013.2295259
    [22] Y. Ren, R. Duan, L. Chen, et al. Stability Assessment of Grid-Connected Converter System Based on Impedance Model and Gershgorin Theorem. IEEE Transactions on Energy Conversion, 2020, 35(3): 1559-1566 doi: 10.1109/TEC.2020.2978490
    [23] W. Rui, S. Qiuye, M. Dazhong, et al. Line Inductance Stability Operation Domain Assessment for Weak Grids With Multiple Constant Power Loads. IEEE Transactions on Energy Conversion, 2021, 36(2): 1045-1055. doi: 10.1109/TEC.2020.3021070
    [24] 卢自宝, 钟尚鹏, 郭戈. 基于分布式策略的直流微电网下垂控制设计. 自动化学报, 在线

    Lu Zibao, Zhong Shangpeng, Guo Ge. Design of Droop Controller for DC Microgrid Based on Distributed Strategy. ACTA AUTOMATICA SINICA, online
    [25] D. Pan, X. Ruan, C. Bao, et al. Capacitor-Current-Feedback Active Damping With Reduced Computation Delay for Improving Robustness of LCL-Type Grid-Connected Inverter. IEEE Transactions on Power Electronics, 2014, 29(7): 3414-3427 doi: 10.1109/TPEL.2013.2279206
    [26] A. A. A. Radwan and Y. A. I. Mohamed. Analysis and Active-Impedance-Based Stabilization of Voltage-Source-Rectifier Loads in Grid-Connected and Isolated Microgrid Applications. IEEE Transactions on Sustainable Energy, 2013, 4(3): 563-576 doi: 10.1109/TSTE.2012.2227981
    [27] R. Wang, Q. Sun, D. Ma, et al. The small-signal stability analysis of the droop-controlled converter in electromagnetic timescale. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1459–1469. doi: 10.1109/TSTE.2019.2894633
    [28] A. Riccobono and E. Santi. Comprehensive review of stability criteria for DC power distribution systems. IEEE Transactions on Industry Applications, 2014, 50(5): 3525–3535. doi: 10.1109/TIA.2014.2309800
    [29] Z. Liu, J. Liu, W. Bao, et al. Infinity-Norm of Impedance Based Stability Criterion for Three Phase AC Distributed Power Systems With Constant Power Loads. IEEE Transactions on Power Electronics, 2015, 30(6): 3030-3043. doi: 10.1109/TPEL.2014.2331419
    [30] R. Wang, Q. Sun, W. Hu, et al. Stability-Oriented Droop Coefficients Region Identification for Inverters Within Weak Grid: An Impedance-Based Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(4): 2258-2268. doi: 10.1109/TSMC.2020.3034243
  • 加载中
计量
  • 文章访问数:  245
  • HTML全文浏览量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 录用日期:  2021-10-18
  • 网络出版日期:  2021-11-11

目录

    /

    返回文章
    返回