2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向Kullback-Leibler散度不确定集的正则化线性判别分析

梁志贞 张磊

梁志贞, 张磊. 面向Kullback-Leibler散度不确定集的正则化线性判别分析. 自动化学报, 2022, 48(4): 1033−1047 doi: 10.16383/j.aas.c210434
引用本文: 梁志贞, 张磊. 面向Kullback-Leibler散度不确定集的正则化线性判别分析. 自动化学报, 2022, 48(4): 1033−1047 doi: 10.16383/j.aas.c210434
Liang Zhi-Zhen, Zhang Lei. Regularized linear discriminant analysis based on uncertainty sets from Kullback-Leibler divergence. Acta Automatica Sinica, 2022, 48(4): 1033−1047 doi: 10.16383/j.aas.c210434
Citation: Liang Zhi-Zhen, Zhang Lei. Regularized linear discriminant analysis based on uncertainty sets from Kullback-Leibler divergence. Acta Automatica Sinica, 2022, 48(4): 1033−1047 doi: 10.16383/j.aas.c210434

面向Kullback-Leibler散度不确定集的正则化线性判别分析

doi: 10.16383/j.aas.c210434
基金项目: 国家自然科学基金(61976216)资助
详细信息
    作者简介:

    梁志贞:中国矿业大学副教授. 2005年获得上海交通大学模式识别与智能系统专业博士学位. 主要研究方向为模式识别, 生物特征识别. 本文通信作者. E-mail: liang@cumt.edu.cn

    张磊:中国矿业大学副教授. 主要研究方向为最优化方法和数据挖掘. E-mail: zhanglei@cumt.edu.cn

Regularized Linear Discriminant Analysis Based on Uncertainty Sets From Kullback-Leibler Divergence

Funds: Supported by National Natural Science Foundation of China (61976216)
More Information
    Author Bio:

    LIANG Zhi-Zhen Associate professor at China University of Mining and Technology. He received his Ph.D. degree in pattern recognition and intelligence system from Shanghai Jiaotong University in 2005. His research interest covers pattern recognition and biometric recognition. Corresponding author of this paper

    ZHANG Lei Associate professor at China University of Mining and Technology. His research interest covers optimization methods and data mining

  • 摘要: 线性判别分析是一种统计学习方法. 针对线性判别分析的小样本奇异性问题和对污染样本敏感性问题, 目前许多线性判别分析的改进算法已被提出. 本文提出了基于Kullback-Leibler (KL)散度不确定集的判别分析方法. 提出的方法不仅利用了Ls范数定义类间距离和Lr范数定义类内距离, 而且对类内样本和各类中心的信息进行基于KL散度不确定集的概率建模. 首先通过优先考虑不利区分的样本提出了一种正则化对抗判别分析模型并利用广义Dinkelbach算法求解此模型. 这种算法的一个优点是在适当的条件下优化子问题不需要取得精确解. 投影(次)梯度法被用来求解优化子问题. 此外, 也提出了正则化乐观判别分析并采用交替优化技术求解广义Dinkelbach算法的优化子问题. 许多数据集上的实验表明了本文的模型优于现有的一些模型, 特别是在污染的数据集上, 正则化乐观判别分析由于优先考虑了类中心附近的样本点, 从而表现出良好的性能.
  • 图  1  L2RALDA, L1RALDA, L2ROLDA和L1ROLDA的收敛性分析

    Fig.  1  Convergence analysis of L2RALDA, L1RALDA, L2ROLDA and L1ROLDA

    图  2  L2RALDA, L1RALDA, L2ROLDA和L1ROLDA的错误率与参数的关系

    Fig.  2  Error rates of L2RALDA, L1RALDA, L2ROLDA and L1ROLDA versus the parameters

    图  3  数据集上不同方法随维数变化的错误率

    Fig.  3  Error rates of various methods with varying dimensions on the Yale database

    图  4  五个图像数据集上各种算法的运行时间

    Fig.  4  Running time of various methods on five image data sets

    图  5  不同方法性能的显著性分析

    Fig.  5  Performance significance analysis of various methods

    表  1  各种方法在原始数据集和污染数据集上的平均错误率(%)和标准偏差

    Table  1  Average error rates (%) of various methods and their standard deviations on the original and contaminated data sets

    Data sets L1-LDA LDA-L1 L21-LDA WLDA L2RALDA L1RALDA L2ROLDA L1ROLDA
    Yale 8.48 (3.42) 9.52 (3.47) 7.81 (4.21) 10.19 (3.24) 8.48 (4.25) 9.19 (3.96) 8.76 (3.84) 7.46 (3.10)
    C-Yale 24.95 (4.76) 25.05 (5.05) 24.86 (4.98) 27.81 (4.87) 27.24 (4.92) 24.57 (4.58) 23.24 (4.49) 22.76 (4.12)
    ORL 9.89 (2.13) 0.21 (2.06) 8.86 (2.45) 10.33 (2.02) 8.98 (2.15) 8.34 (2.12) 9.66 (2.18) 9.19 (1.92)
    C-ORL 14.62 (2.41) 15.27 (2.32) 13.98 (2.73) 15.92 (2.85) 15.82 (2.67) 13.13 (2.63) 13.45 (2.49) 12.58 (2.52)
    UMIST 8.99 (2.09) 9.23 (2.07) 8.87 (2.75) 10.15 (2.02) 9.42 (2.15) 8.83 (2.12) 9.07 (2.18) 8.98 (1.99)
    C-UMIST 24.52 (3.89) 26.33 (3.93) 22.98 (3.85) 29.23 (3.84) 23.39 (4.04) 23.52 (3.92) 23.22 (3.88) 21.90 (3.72)
    COIL 18.45 (2.02) 19.46 (1.64) 18.21 (1.65) 19.97 (1.79) 19.05 (1.64) 17.98 (1.46) 18.31 (2.12) 17.42 (2.14)
    C-COIL 28.34 (3.41) 29.66 (3.49) 27.35 (3.55) 29.01 (3.15) 28.46 (3.43) 27.65 (2.43) 28.32 (3.01) 26.22 (3.32)
    AR-sunglasses 9.26 (1.73) 9.38 (1.46) 8.05 (1.57) 10.02 (1.70) 9.21 (1.53) 9.01 (1.25) 8.25 (1.23) 7.33 (1.79)
    AR-scarf 21.29 (1.10) 20.81 (1.25) 19.03 (1.28) 28.02 (0.92) 26.35 (0.89) 20.34 (1.34) 19.38 (1.24) 17.24 (1.34)
    下载: 导出CSV

    表  2  各种方法在原始数据集上的平均正确率(ACR(%)), 标准偏差(SD)和$ p $-值

    Table  2  Average correct rates (ACR(%)), standard deviations (SD), and $ p $-values of various methods on the original data sets

    Data sets L1-LDA LDA-L1 L21-LDA WLDA L2RALDA L1RALDA L2ROLDA L1ROLDA
    ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD)
    $ p $-值 $ p $-值 $ p $-值 $ p $-值 $ p $-值 $ p $-值 $ p $-值 $ p $- 值
    Australian 82.22 (3.44) 80.15 (3.36) 83.44 (3.57) 80.12 (3.29) 79.15 (3.61) 82.99 (3.46) 79.77 (3.27) 84.12 (3.63)
    7.98$ \times 10^{-3} $ 3.13$ \times 10^{-5} $ 0.43 3.00$ \times 10^{-5} $ 1.45$ \times 10^{-5} $ 0.028 1.78$ \times 10^{-5} $
    Diabetes 72.55 (4.51) 71.68 (4.62) 73.28 (4.33) 70.19 (4.40) 71.18 (4.71) 72.87 (4.26) 71.99 (4.27) 72.68 (4.39)
    0.22 0.15 0.84 0.0084 0.10 0.46 0.19
    German 74.45 (3.66) 72.02 (3.69) 74.68 (3.88) 69.34 (3.77) 72.06 (3.54) 74.99 (3.49) 72.67 (3.66) 73.74 (3.48)
    0.03 1.30$ \times 10^{-3} $ 0.04 6.39$ \times 10^{-4} $ 7.84$ \times 10^{-3} $ 0.04 0.01
    Heart 75.89 (5.11) 74.36 (5.13) 77.32 (5.16) 73.53 (5.17) 74.22 (5.22) 77.52 (5.34) 75.67 (5.54) 78.98 (5.19)
    8.94$ \times 10^{-4} $ 5.99$ \times 10^{-5} $ 0.012 3.72$ \times 10^{-6} $ 4.81$ \times 10^{-5} $ 0.043 1.14$ \times 10^{-4} $
    Liver 65.25 (4.33) 63.27 (4.78) 64.34 (4.99) 62.87 (4.60) 62.99 (4.71) 64.12 (4.37) 63.01 (4.48) 64.54 (4.29)
    0.52 0.89 0.28 0.074 0.08 0.68 0.51
    Sonar 72.11 (4.98) 70.99 (4.96) 73.16 (5.52) 70.21 (5.43) 70.68 (5.06) 72.45 (5.21) 70.99 (5.29) 73.22 (5.16)
    0.06 6.07$ \times 10^{-4} $ 0.72 3.80$ \times 10^{-4} $ 4.45$ \times 10^{-4} $ 0.074 6.69$ \times 10^{-4} $
    Waveform 83.27 (1.99) 82.18 (2.12) 85.12 (1.88) 81.23 (1.94) 81.53 (2.15) 83.69 (2.22) 81.49 (2.10) 86.28 (1.98)
    1.93$ \times 10^{-5} $ 8.97$ \times 10^{-6} $ 0.08 1.42$ \times 10^{-6} $ 1.83$ \times 10^{-6} $ 7.10$ \times 10^{-5} $ 1.57$ \times 10^{-6} $
    WPBC 77.89 (5.19) 75.32 (5.23) 78.23 (5.44) 72.12 (5.37) 73.14 (5.21) 79.33 (5.36) 72.99 (5.28) 77.89 (5.29)
    0.47 1.67$ \times 10^{-4} $ 0.17 1.19$ \times 10^{-5} $ 1.58$ \times 10^{-5} $ 4.76$ \times 10^{-3} $ 6.08$ \times 10^{-6} $
    下载: 导出CSV

    表  3  各种方法在污染数据集上的平均正确率(ACR(%)), 标准偏差(SD)和$ p $-值

    Table  3  Average correct rates (ACR(%)), standard deviations (SD), and $ p $-values of various methods on the contaminated data sets

    Data sets L1-LDA LDA-L1 L21-LDA WLDA L2RALDA L1RALDA L2ROLDA L1ROLDA
    ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD) ACR (SD)
    $ p $-值 $ p $-值 $ p $-值 $ p $- 值 $ p $-值 $ p $-值 $ p $-值
    Australian 80.45 (3.56) 78.34 (3.77) 81.65 (3.46) 75.22 (3.89) 77.26 (3.45) 81.78 (3.66) 79.62 (3.78) 82.51 (3.52)
    1.99$ \times 10^{-4} $ 7.89$ \times 10^{-6} $ 0.025 6.02$ \times 10^{-7} $ 5.17$ \times 10^{-6} $ 0.04 2.10$ \times 10^{-5} $
    Diabetes 70.63 (4.22) 69.44 (4.29) 70.32 (4.35) 65.26 (4.65) 69.37 (4.60) 70.65 (4.05) 70.38 (4.30) 70.37 (4.41)
    0.41 0.055 0.29 7.55$ \times 10^{-5} $ 0.037 0.49 0.39
    German 71.34 (3.48) 70.08 (3.55) 71.76 (3.22) 64.45 (3.79) 70.05 (3.86) 71.09 (3.94) 71.39 (3.68) 72.36 (3.77)
    5.08$ \times 10^{-3} $ 0.92$ \times 10^{-3} $ 1.41$ \times 10^{-2} $ 1.30$ \times 10^{-7} $ 1.80$ \times 10^{-3} $ 0.027 0.099
    Heart 72.05 (5.26) 72.24 (5.45) 72.44 (5.13) 66.53 (4.98) 70.22 (5.26) 70.35 (5.39) 71.51 (4.99) 74.88 (5.10)
    3.06$ \times 10^{-3} $ 1.58$ \times 10^{-3} $ 8.12$ \times 10^{-3} $ 2.03$ \times 10^{-6} $ 0.35$ \times 10^{-4} $ 1.06$ \times 10^{-4} $ 0.67$ \times 10^{-3} $
    Liver 62.67 (4.33) 60.67 (4.59) 62.53 (4.25) 59.36 (4.78) 60.08 (4.32) 62.04 (4.64) 61.01 (4.13) 63.98 (4.31)
    0.047 9.79$ \times 10^{-4} $ 0.039 1.51$ \times 10^{-4} $ 2.75$ \times 10^{-4} $ 0.032 7.22$ \times 10^{-3} $
    Sonar 70.56 (5.71) 68.89 (5.96) 71.37 (5.34) 66.19 (5.39) 68.34 (5.30) 70.32 (5.41) 69.82 (5.27) 71.02 (5.19)
    0.17 9.16$ \times 10^{-4} $ 0.55 6.18$ \times 10^{-5} $ 2.34$ \times 10^{-4} $ 0.12 6.99$ \times 10^{-2} $
    Waveform 80.46 (1.89) 79.04 (2.03) 81.08 (1.96) 79.28 (1.89) 80.56 (1.95) 81.75 (2.02) 80.73 (2.11) 82.28 (2.03)
    4.47$ \times 10^{-3} $ 1.54$ \times 10^{-5} $ 0.03 4.69$ \times 10^{-5} $ 5.27$ \times 10^{-3} $ 0.18 6.33$ \times 10^{-3} $
    WPBC 73.44 (5.10) 71.35 (5.15) 73.31 (5.27) 70.25 (5.29) 70.21 (5.33) 72.21 (5.39) 70.82 (5.42) 74.76 (5.22)
    0.49 2.30$ \times 10^{-2} $ 0.34 3.17$ \times 10^{-3} $ 2.96$ \times 10^{-3} $ 3.59$ \times 10^{-2} $ 8.34$ \times 10^{-3} $
    下载: 导出CSV
  • [1] Kan M N, Shan S G, Zhang H H, Lao S H, Chen X L. Multi-view discriminant analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 188-194 doi: 10.1109/TPAMI.2015.2435740
    [2] Kwak N. Principal component analysis based on L1-norm maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1672-1680 doi: 10.1109/TPAMI.2008.114
    [3] Kwak N. Principal component analysis by Lp-norm maximization. IEEE Transactions on Cybernetics, 2014, 44(5): 594-609 doi: 10.1109/TCYB.2013.2262936
    [4] 高云龙, 罗斯哲, 潘金艳, 陈柏华, 张逸松. 鲁棒自适应概率加权主成分分析. 自动化学报, 2021, 47(4): 825-838

    Gao Yun-Long, Luo Si-Zhe, Pan Jin-Yan, Chen Bai-Hua, Zhang Yi-Song. Robust PCA using adaptive probability weighting. Acta Automatica Sinica, 2021, 47(4): 825-838
    [5] 何进荣, 闭应洲, 丁立新, 刘斌. 局部差异正则化的边界判别投影. 计算机学报, 2018, 41(4): 780-795 doi: 10.11897/SP.J.1016.2018.00780

    He Jin-Rong, Bi Ying-Zhou, Ding Li-Xin, Liu Bin. Local variation regularized margin discriminant projection. Chinese Journal of Computers, 2018, 41(4): 780-795 doi: 10.11897/SP.J.1016.2018.00780
    [6] Zheng W M, Lin Z C, Wang H X. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 793-805 doi: 10.1109/TNNLS.2013.2281428
    [7] Zhong K, Han M, Qiu T, Han B. Fault diagnosis of complex processes using sparse kernel local fisher discriminant analysis. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1581-1591 doi: 10.1109/TNNLS.2019.2920903
    [8] Iosifidis A, Tefas A, Pitas I. On the optimal class representation in linear discriminant analysis. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(9): 1491-1497 doi: 10.1109/TNNLS.2013.2258937
    [9] Zheng S, Ding C, Nie F P, Huang H. Harmonic mean linear discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(8): 1520-1531 doi: 10.1109/TKDE.2018.2861858
    [10] Nie F P, Wang Z, Wang R, Li X L. Submanifold-preserving discriminant analysis with an auto-optimized graph. IEEE Transactions on Cybernetics, 2020, 50(8): 3682-3695 doi: 10.1109/TCYB.2019.2910751
    [11] Lotlikar R, Kothari R. Fractional-step dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 623-627 doi: 10.1109/34.862200
    [12] Loog M, Duin R P W, Haeb-Umbach R. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(7): 762-766 doi: 10.1109/34.935849
    [13] Tao D C, Li X L, Wu X D, Maybank S J. Geometric mean for subspace selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 260-274 doi: 10.1109/TPAMI.2008.70
    [14] Bian W, Tao D C. Harmonic mean for subspace selection. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1−4
    [15] Li Z H, Nie F P, Chang X J, Yang Y. Beyond trace ratio: Weighted harmonic mean of trace ratios for multiclass discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2100-2110 doi: 10.1109/TKDE.2017.2728531
    [16] Zhang Y, Yeung D Y. Worst-case linear discriminant analysis. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2010. 2568−2576
    [17] Bian W, Tao D C. Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 1037-1050 doi: 10.1109/TPAMI.2010.189
    [18] Flamary R, Cuturi M, Courty N, Rakotomamonjy A. Wasserstein discriminant analysis. Machine Learning, 2018, 107(12): 1923-1945 doi: 10.1007/s10994-018-5717-1
    [19] Zhao X W, Guo J, Nie F P, Chen L, Li Z H, Zhang H X. Joint principal component and discriminant analysis for dimensionality reduction. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 433-444 doi: 10.1109/TNNLS.2019.2904701
    [20] Cao M, Chen C, Hu X Y, Peng S L. Towards fast and kernelized orthogonal discriminant analysis on person re-identification. Pattern Recognition, 2019, 94: 218-229 doi: 10.1016/j.patcog.2019.05.035
    [21] Shawe-Taylor J, Cristianini N. Kernel methods for Pattern Analysis. New York: Cambridge University Press, 2004.
    [22] Tao D P, Guo Y N, Li Y T, Gao X B. Tensor rank preserving discriminant analysis for facial recognition. IEEE Transactions on Image Processing, 2018, 27(1): 325-334 doi: 10.1109/TIP.2017.2762588
    [23] Liu J C, Lian Z H, Wang Y, Xiao J G. Incremental kernel null space discriminant analysis for novelty detection. In: Proceedings of the 2017 IEEE conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 4123−4131
    [24] Pang S N, Ozawa S, Kasabov N. Incremental linear discriminant analysis for classification of data streams. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(5): 905-914 doi: 10.1109/TSMCB.2005.847744
    [25] Zhao H F, Wang Z, Nie F P. A new formulation of linear discriminant analysis for robust dimensionality reduction. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(4): 629-640 doi: 10.1109/TKDE.2018.2842023
    [26] Zheng W M, Lu C, Lin Z C, Zhang T, Cui Z, Yang W K. ℓ1-norm heteroscedastic discriminant analysis under mixture of Gaussian distributions. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 2898-2915 doi: 10.1109/TNNLS.2018.2863264
    [27] Ye Q L, Yang J, Liu F, Zhao C X, Ye N, Yin T M. L1-norm distance linear discriminant analysis based on an effective iterative algorithm. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(1): 114-129 doi: 10.1109/TCSVT.2016.2596158
    [28] Zhong F J, Zhang J S. Linear discriminant analysis based on L1-norm maximization. IEEE Transactions on Image Processing, 2013, 22(8): 3018-3027 doi: 10.1109/TIP.2013.2253476
    [29] Wang H X, Lu X S, Hu Z L, Zheng W M. Fisher discriminant analysis with L1-norm. IEEE Transactions on Cybernetics, 2014, 44(6): 828-842 doi: 10.1109/TCYB.2013.2273355
    [30] Li X L, Pang Y W, Yuan Y. L1-norm-based 2DPCA. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(4): 1170-1175 doi: 10.1109/TSMCB.2009.2035629
    [31] Liu Y, Gao Q X, Miao S, Gao X B, Nie F P, Li Y S. A non-greedy algorithm for L1-norm LDA. IEEE Transactions on Image Processing, 2017, 26(2): 684-695 doi: 10.1109/TIP.2016.2621667
    [32] Li C N, Shang M Q, Shao Y H, Xu Y, Liu L M, Wang Z. Sparse L1-norm two dimensional linear discriminant analysis via the generalized elastic net regularization. Neurocomputing, 2019, 337: 80-96 doi: 10.1016/j.neucom.2019.01.049
    [33] Li C N, Shao Y H, Wang Z, Deng N Y, Yang Z M. Robust Bhattacharyya bound linear discriminant analysis through an adaptive algorithm. Knowledge-Based Systems, 2019, 183: Article No. 104858
    [34] Nie F P, Wang Z, Wang R, Wang Z, Li X L. Towards robust discriminative projections learning via non-greedy ℓ2,1ℓ2,1-norm MinMax. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2086-2100 doi: 10.1109/TPAMI.2019.2961877
    [35] Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
    [36] Liang Z Z, Chen X W, Zhang L, Liu J, Zhou Y. Correlation classifiers based on data perturbation: New formulations and algorithms. Pattern Recognition, 2020, 100: Article No. 107106
    [37] Ben-Tal A, den Hertog D, De Waegenaere A, Melenberg B, Rennen G. Robust solutions of optimization problems affected by uncertain probabilities. Management Science, 2012, 59(2): 341-357
    [38] Bonnans J F, Shapiro A. Optimization problems with perturbations: A guided tour. SIAM Review, 1998, 40(2): 228-264 doi: 10.1137/S0036144596302644
    [39] Ródenas R G, López M L, Verastegui D. Extensions of Dinkelbach's algorithm for solving non-linear fractional programming problem. Top, 1999, 7(1): 33-70 doi: 10.1007/BF02564711
    [40] Demšar J. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 2006, 7: 1-30
    [41] Absil P A, Mahony R, Sepulchre R. Optimization Algorithms on Matrix Manifolds. Princeton: Princeton University Press, 2008.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  327
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 录用日期:  2021-11-02
  • 网络出版日期:  2021-12-05
  • 刊出日期:  2022-04-13

目录

    /

    返回文章
    返回