2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动化学科面临的挑战

孙长银 吴国政 王志衡 丛杨 穆朝絮 贺威

孙长银,  吴国政,  王志衡,  丛杨,  穆朝絮,  贺威.  自动化学科面临的挑战.  自动化学报,  2021,  47(2): 464−474 doi: 10.16383/j.aas.c200904
引用本文: 孙长银,  吴国政,  王志衡,  丛杨,  穆朝絮,  贺威.  自动化学科面临的挑战.  自动化学报,  2021,  47(2): 464−474 doi: 10.16383/j.aas.c200904
Sun Chang-Yin,  Wu Guo-Zheng,  Wang Zhi-Heng,  Cong Yang,  Mu Chao-Xu,  He Wei.  On challenges in automation science and technology.  Acta Automatica Sinica,  2021,  47(2): 464−474 doi: 10.16383/j.aas.c200904
Citation: Sun Chang-Yin,  Wu Guo-Zheng,  Wang Zhi-Heng,  Cong Yang,  Mu Chao-Xu,  He Wei.  On challenges in automation science and technology.  Acta Automatica Sinica,  2021,  47(2): 464−474 doi: 10.16383/j.aas.c200904

自动化学科面临的挑战

doi: 10.16383/j.aas.c200904
基金项目: 国家自然科学基金(61942301)资助
详细信息
    作者简介:

    孙长银:东南大学自动化学院教授. 主要研究方向为智能控制与优化, 强化学习, 神经网络, 数据驱动控制. E-mail: cysun@seu.edu.cn

    吴国政:博士, 国家自然科学基金委员会信息科学部三处处长. 主要研究方向为人工智能. 本文通信作者. E-mail: wugz@nsfc.gov.cn

    王志衡:博士, 国家自然科学基金委员会信息科学部三处项目主任. 主要研究方向为自动化. E-mail: wangzh@nsfc.gov.cn

    丛杨:中国科学院沈阳自动化研究所研究员, 目前为国家自然科学基金委员会信息科学部三处流动项目主任. 主要研究方向为计算机视觉, 智能视频处理, 机器学习, 机器人伺服. E-mail: congyang@nsfc.gov.cn

    穆朝絮:天津大学电气自动化与信息工程学院教授. 主要研究方向为强化学习, 自适应学习系统, 智能控制和优化. E-mail: cxmu@tju.edu.cn

    贺威:北京科技大学自动化学院教授. 主要研究方向为机器人学, 振动控制和智能控制系统. E-mail: weihe@ieee.org

On Challenges in Automation Science and Technology

Funds: Supported by National Natural Science Foundation of China (61942301)
More Information
    Author Bio:

    SUN Chang-Yin Professor at the School of Automation, Southeast University. His research interest covers intelligent control and optimization, reinforcement learning, neural networks, data-driven control

    WU Guo-Zheng Ph. D., director of Division 3 in the Department of Information Sciences, National Natural Science Foundation of China. His main research interest is artificial intelligence. Corresponding author of this paper

    WANG Zhi-Heng Ph. D., program director of Division 3 in the Department of Information Sciences, National Natural Science Foundation of China. His main research interest is automation

    CONG Yang Professor at the Shenyang Institute of Automation, Chinese Academy of Sciences. He is currently a non-permanent program director in the Department of Information Sciences, National Natural Science Foundation of China. His research interest covers computer vision, intelligent video processing, machine learning, robot servo

    MU Chao-Xu Professor at the School of Electrical and Information Engineering, Tianjin University. Her research interest covers reinforcement learning, adaptive and learning systems, intelligent control and optimization

    HE Wei Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. His research interest covers robotics, vibration control and intelligent control systems

  • 摘要:

    本文分析了控制理论与应用、模式识别与智能系统、导航制导与控制、系统科学与工程、人工智能与自动化交叉等领域的发展现状. 结合科技发展、国内国际研究前沿和新兴领域对自动化科学技术的需求, 提出重点发展智能控制理论和方法、高性能作业机器人、信息物理系统、导航与控制技术、重大装备自动化技术、自主智能系统和人工智能驱动的自动化技术优先领域, 加强数据驱动控制理论、人工智能基础理论研究, 进一步发展人机协同、跨域融合的智能自动化, 为实现国家社会的全面信息化智能化提供理论和技术保障.

  • 图  1  智能控制理论研究方向

    Fig.  1  Research directions of intelligent control theory

    图  2  高性能作业机器人主要发展方向和关键技术

    Fig.  2  Development directions and key technologies of high performance robots

    图  3  信息物理系统主要研究方向

    Fig.  3  Research directions of cyber-physical systems

    图  4  导航制导与控制领域的重要进展及发展趋势

    Fig.  4  Important progress and trend of navigation, guidance and control

    图  5  重大装备智能控制与维护

    Fig.  5  Intelligent control and maintenance of automatic equipments

    图  6  自主智能系统的总体发展思路

    Fig.  6  Development strategy of autonomous intelligent systems

    图  7  人工智能和自动化交叉领域若干前沿研究方向

    Fig.  7  Cutting-edge research directions in automation with AI

  • [1] 王成红, 宋苏, 刘允刚. 国家自然科学基金与我国控制理论与控制工程学科的发展. 中国基础科学, 2010, 12(6): 38−42 doi: 10.3969/j.issn.1009-2412.2010.06.009

    Wang Cheng-Hong, Song Su, Liu Yun-Gang. The more and more important effort of scientfic foundation on the subject of control theory and applications. China Basic Science, 2010, 12(6): 38−42 doi: 10.3969/j.issn.1009-2412.2010.06.009
    [2] 中国自动化学会. 2016-2017控制科学与工程学科发展报告. 北京: 中国科学技术出版社, 2018

    China Automation Association. 2016-2017 development report of control science and engineering. Beijing: China Science and Technology Press, 2018
    [3] 柴天佑. 自动化科学与技术发展方向. 自动化学报, 2018, 44(11): 1923−1930

    Chai Tian-You. Development directions of automation science and technology. Acta Automatica Sinica, 2018, 44(11): 1923−1930
    [4] 包为民, 祁振强, 张玉. 智能控制技术发展的思考. 中国科学: 信息科学, 2020, 50(08): 1267−1272

    Bao Wei-Min, Qi Zhen-Qiang, Zhang Yu. Thoughts on the development of intelligent control technology. Scientia Sinica Informationis (in Chinese), 2020, 50(08): 1267−1272
    [5] 吴国政. 从F03项目资助情况分析我国自动化学科的发展现状与趋势. 自动化学报, 2019, 45(9): 1611−1619

    Wu Guo-Zheng. Analysis of the status and trend of the development of China's automation discipline from F03 funding of NSFC. Acta Automatica Sinica, 2019, 45(9): 1611−1619
    [6] 邓方, 宋苏, 刘克, 吴国政, 付俊. 国家自然科学基金自动化领域数据分析与研究热点变化. 自动化学报, 2018, 44(2): 377−384

    Deng Fang, Song Su, Liu Ke, Wu Guo-Zheng, Fu Jun. Data and research hotspot analyses of national natural science foundation of china in automation field. Acta Automatica Sinica, 2018, 44(2): 377−384
    [7] Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Physics Reports, 2008, 468(3): 93−153
    [8] 钱锋, 杜文莉, 钟伟民, 唐漾. 石油和化工行业智能优化制造若干问题及挑战. 自动化学报, 2017, 43(6): 893−901

    Qian Feng, Du Wen-Li, Zhong Wei-Min, Tang Yang. Problems and challenges of smart optimization manufacturing in petrochemical industries. Acta Automatica Sinica, 2017, 43(6): 893−901
    [9] He W, Li Z, Chen C L P. A survey of human-centered intelligent robots: Issues and challenges. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 602−609
    [10] Zheng Nan-Ning, Liu Zi-Yi, Ren Peng-Ju, Ma Yong-Qiang, Chen Shi-Tao, Yu Si-Yu, et al. Hybrid-augmented intelligence: Collaboration and cognition. Frontiers of Information Technology & Electronic Engineering, 2017, 18: 153−179
    [11] 孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题. 自动化学报, 2020, 46(7): 71−79

    Sun Chang-Yin, Mu Chao-Xu. Important scientific problems of multi-agent deep reinforcement learning. Acta Automatica Sinica, 2020, 46(7): 71−79
    [12] 李晓华. 面向智慧社会的“新基建”及其政策取向. 改革, 2020, 315(5): 34−48

    Li Xiao-Hua. New infrastructure construction and policy orientation for a smart society. Reform, 2020, 315(5): 34−48
    [13] Burdet E, Osu R, Franklin D W, Milner T E, Kawato M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 2001, 414(6862): 446−449
    [14] Ding Han, Yang Xue-Jun, Zheng Nan-Ning, Li Ming, Lai Yi-Nan, Wu Hao. Tri-Co Robot: A Chinese robotic research initiative for enhanced robot interaction capabilities. National Science Review, 2017, 5(6): 799−801
    [15] 中国电子技术标准化研究院. 信息物理系统白皮书 [Online], available: http://www.cesi.cn/201703/2251.html, 2017年1月1日

    China Electronics Standardization Institute. White paper: Cyber-physical system [Online], available: http://www.cesi.cn/201703/2251.html, January 1, 2017
    [16] 王飞跃, 张军, 张俊, 王晓. 工业智联网: 基本概念、关键技术与核心应用. 自动化学报, 2018, 44(9): 1606−1617

    Wang Fei-Yue, Zhang Jun, Zhang Jun, Wang Xiao. Industrial internet of minds: Concept, technology and application. Acta Automatica Sinica, 2018, 44(9): 1606−1617
    [17] 孙长银, 穆朝絮, 张瑞民. 高超声速飞行器终端滑模控制技术. 北京: 科学出版社, 2014

    Sun Chang-Yin, Mu Chao-Xu, Zhang Rui-Min. Terminal sliding mode control of hypersonic aircrafts. Beijing: Science Press, 2014
    [18] 杨浩, 姜斌, 周东华. 互联系统容错控制的研究回顾与展望. 自动化学报, 2017, 43(1): 9−19

    Yang Hao, Jiang Bin, Zhou Dong-Hua. Review and perspectives on fault tolerant control for interconnected systems. Acta Automatica Sinica, 2017, 43(1): 9−19
    [19] 陈杰. 面向社会治理的智能群系统基础研究. 国家自然科学基金委员会第252期双清论坛, 2020

    Chen Jie. Foundational research on intelligent group system for social governance. The 252nd Shuang-Qing Symposium of National Natural Science Foundation of China, 2020
    [20] 吴军, 徐昕, 王健, 贺汉根. 面向多机器人系统的增强学习研究进展综述. 控制与决策, 2011, 26(11): 1601−1610

    Wu Jun, Xu Xin, Wand Jian, He Han-Gen. Recent advances of reinforcement learning in multi-robot systems: A survey. Control and Decision, 2011, 26(11): 1601−1610
    [21] Sutton R S, Barto A G. Reinforcement learning: An introduction. Cambridge MA: MIT Press, 1998
    [22] Silver D, Huang A, Maddison C, et al. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587): 484−489
  • 加载中
图(7)
计量
  • 文章访问数:  4066
  • HTML全文浏览量:  5797
  • PDF下载量:  2394
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 网络出版日期:  2020-12-18
  • 刊出日期:  2021-02-20

目录

    /

    返回文章
    返回