2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件触发的全信息粒子群优化器及其应用

王闯 韩非 申雨轩 李学贵 董宏丽

王闯, 韩非, 申雨轩, 李学贵, 董宏丽. 基于事件触发的全信息粒子群优化器及其应用. 自动化学报, 2023, 49(4): 891−903 doi: 10.16383/j.aas.c200621
引用本文: 王闯, 韩非, 申雨轩, 李学贵, 董宏丽. 基于事件触发的全信息粒子群优化器及其应用. 自动化学报, 2023, 49(4): 891−903 doi: 10.16383/j.aas.c200621
Wang Chuang, Han Fei, Shen Yu-Xuan, Li Xue-Gui, Dong Hong-Li. Full-information particle swarm optimizer based on event-triggering strategy and its applications. Acta Automatica Sinica, 2023, 49(4): 891−903 doi: 10.16383/j.aas.c200621
Citation: Wang Chuang, Han Fei, Shen Yu-Xuan, Li Xue-Gui, Dong Hong-Li. Full-information particle swarm optimizer based on event-triggering strategy and its applications. Acta Automatica Sinica, 2023, 49(4): 891−903 doi: 10.16383/j.aas.c200621

基于事件触发的全信息粒子群优化器及其应用

doi: 10.16383/j.aas.c200621
基金项目: 国家自然科学基金 (U21A2019, 61873058, 61933007, 62073070), 海南省科技专项基金 (ZDYF2022SHFZ105), 黑龙江省省属高校基本科研业务费 (2022TSTD-04) 资助
详细信息
    作者简介:

    王闯:东北石油大学博士研究生. 主要研究方向为深度学习与管道完整性分析. E-mail: wangchuang64@126.com

    韩非:东北石油大学人工智能能源研究院教授. 2017年获得上海理工大学系统分析与集成专业博士学位. 主要研究方向为分布式滤波与控制, 深度学习和强化学习. E-mail: tomcumt@126.com

    申雨轩:东北石油大学人工智能能源研究院副教授. 2020年获得东华大学控制科学与工程专业博士学位. 主要研究方向为网络化系统的滤波与控制. E-mail: shenyuxuan5973@163.com

    李学贵:东北石油大学计算机与信息技术学院副教授. 2017年获得东北石油大学地质资源与地质工程专业博士学位. 主要研究方向为深度学习与大数据分析, 微地震监测技术. E-mail: lixg82@163.com

    董宏丽:东北石油大学人工智能能源研究院教授. 2012年获得哈尔滨工业大学控制科学与工程专业博士学位. 主要研究方向为网络化控制系统, 智能控制, 传感器网络信息处理. 本文通信作者. E-mail: shiningdhl@gmail.com

Full-information Particle Swarm Optimizer Based on Event-triggering Strategy and Its Applications

Funds: Supported by National Natural Science Foundation of China (U21A2019, 61873058, 61933007, 62073070), Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105), and Heilongjiang Provincial Universities Basic Research Operation Fee (2022TSTD-04)
More Information
    Author Bio:

    WANG Chuang Ph.D. candidate at Northeast Petroleum University. His research interest covers deep learning and pipeline integrity analysis

    HAN Fei Professor at the Artificial Intelligence Energy Research Institute, Northeast Petroleum University. He received his Ph.D. degree in system analysis and integration from University of Shanghai for Science and Technology in 2017. His research interest covers distributed filtering and control, deep learning, and reinforcement learning

    SHEN Yu-Xuan Associate professor at the Artificial Intelligence Energy Research Institute, Northeast Petroleum University. He received his Ph.D. degree in control science and engineering from Donghua University in 2020. His research interest covers filtering and control of networked systems

    LI Xue-Gui Associate professor at the School of Computer and Information Technology, Northeast Petroleum University. He received his Ph.D. degree in geological resources and geological engineering from Northeast Petroleum University in 2017. His research interest covers deep learning and big data analysis, and microseismic monitoring technology

    DONG Hong-Li Professor at the Artificial Intelligence Energy Research Institute, Northeast Petroleum University. She received her Ph.D. degree in control science and engineering from Harbin Institute of Technology in 2012. Her research interest covers networked control system, intelligent control, and sensor network information processing. Corresponding author of this paper

  • 摘要: 针对标准粒子群优化算法存在早熟收敛和容易陷入局部最优的问题, 本文提出了一种基于事件触发的全信息粒子群优化算法(Event-triggering-based full-information particle swarm optimization, EFPSO). 首先, 引入一类基于粒子空间特性的事件触发策略实现粒子群优化算法(Particle swarm optimization, PSO) 的模态切换, 更好地维持了算法搜索和收敛能力之间的动态平衡. 然后, 鉴于引入历史信息能够降低算法陷入局部最优的可能性, 提出一种全信息策略来克服PSO算法搜索能力不足的缺陷. 数值仿真实验表明, EFPSO算法在种群多样性、收敛率、成功率方面优于其他改进的PSO算法. 最后, 应用EFPSO算法对变分模态分解(Variational mode decomposition, VMD)去噪算法进行改进, 并在现场管道信号去噪取得了很好的效果.
  • 图  1  PSO算法寻优过程

    Fig.  1  Optimization process of the PSO algorithm

    图  2  EFPSO算法流程图

    Fig.  2  The flowchart of the EFPSO algorithm

    图  3  Sphere函数收敛特性

    Fig.  3  Convergence characteristics of Sphere

    图  4  Ackley函数收敛特性

    Fig.  4  Convergence characteristics of Ackley

    图  5  Rastrigin函数收敛特性

    Fig.  5  Convergence characteristics of Rastrigin

    图  6  Schwefe 2.22函数收敛特性

    Fig.  6  Convergence characteristics of Schwefe 2.22

    图  7  Schwefe 1.2函数收敛特性

    Fig.  7  Convergence characteristics of Schwefe 1.2

    图  8  Griewank函数收敛特性

    Fig.  8  Convergence characteristics of Griewank

    图  9  Penalized 1函数收敛特性

    Fig.  9  Convergence characteristics of Penalized 1

    图  10  Step 函数收敛特性

    Fig.  10  Convergence characteristics of Step

    图  11  原始现场管道信号

    Fig.  11  Signal of original pipeline

    图  12  EMD算法去噪后的现场管道信号

    Fig.  12  Pipeline signal denoised by EMD algorithm

    图  13  VMD算法去噪后的现场管道信号

    Fig.  13  Pipeline signal denoised by VMD algorithm

    图  14  PSO-VMD算法去噪后的现场管道信号

    Fig.  14  Pipeline signal denoised by PSO-VMD algorithm

    图  15  EFPSO-VMD算法去噪后的现场管道信号

    Fig.  15  Pipeline signal denoised by EFPSO-VMD algorithm

    图  16  EFPSO优化的VMD去噪算法适应度函数收敛曲线

    Fig.  16  Convergence curve of the EFPSO optimized VMD denoising algorithm

    表  1  基准函数配置

    Table  1  The benchmark function configuration

    函数 名称 搜索范围 维数 阈值 最优值
    $f_{1}(x)$ Sphere [−100 100] 20 0.01 0
    $f_{2}(x)$ Ackley [−32 32] 20 0.01 0
    $f_{3}(x)$ Rastrigin [−5.12 5.12] 20 50 0
    $f_{4}(x)$ Schwefe 2.22 [−10 10] 20 0.01 0
    $f_{5}(x)$ Schwefe 1.2 [−100 100] 20 0.01 0
    $f_{6}(x)$ Griewank [−600 600] 20 0.01 0
    $f_{7}(x)$ Penalized 1 [−100 100] 20 0.01 0
    $f_{8}(x)$ Step [−100 100] 20 0.01 0
    下载: 导出CSV

    表  2  6种PSO算法测试结果统计

    Table  2  Six PSO algorithms test results statistics

    PSO-LDIW PSO-TVAC PSO-CK SDPSO MDPSO EFPSO
    $f_{1}(x)$ 最小值 $2.44\times10^{-202}$ $8.44\times10^{-152}$ 0 $6.85\times10^{-13}$ $7.57\times10^{-68}$ $1.60\times10^{-139}$
    均值 $1.90\times10^{-188}$ $3.49\times10^{-58}$ 0 $4.26\times10^{-9}$ $2.99\times10^{-46}$ $1.63\times10^{-75}$
    标准差 0 $2.47\times10^{-57}$ 0 $9.72\times10^{-9}$ $1.89\times10^{-45}$ $7.32\times10^{-75}$
    成功率(%) 100 100 100 100 100 100
    $f_{2}(x)$ 最小值 $2.66\times10^{-15}$ $2.66\times10^{-15}$ $2.66\times10^{-15}$ $4.09\times10^{-7}$ $2.66\times10^{-15}$ $2.66\times10^{-15}$
    均值 $5.15\times10^{-15}$ $5.50\times10^{-15}$ $2.72$ $7.14\times10^{-6}$ $8.06\times10^{-15}$ $5.50\times10^{-15}$
    标准差 $1.64\times10^{-15}$ $1.43\times10^{-15}$ $4.00$ $5.89\times10^{-6}$ $3.22\times10^{-15}$ $1.45\times10^{-15}$
    成功率(%) 100 100 20 100 100 100
    $f_{3}(x)$ 最小值 $3.97$ $2.98$ $20.8$ $3.99$ $5.96$ $4.97$
    均值 $17.1$ $10.2$ $56.3$ $19.5$ $21.1$ $ 9.50$
    标准差 $15.3$ $4.10$ $22.6$ $12.7$ $12.3$ $2.44$
    成功率(%) 96 100 50 94 98 100
    $f_{4}(x)$ 最小值 $5.09\times10^{-119}$ $1.07\times10^{-37}$ $6.60\times10^{-65}$ $2.46\times10^{-8}$ $4.37\times10^{-34}$ $1.99\times10^{-32}$
    均值 $12.6$ $6.00\times10^{-1}$ $3.11\times10^{-3}$ $3.00$ $1.40$ $2.96\times10^{-18}$
    标准差 $11.9$ $2.39$ $8.40$ $5.05$ $3.50$ $1.32\times10^{-17}$
    成功率(%) 28 94 44 72 86 100
    $f_{5}(x)$ 最小值 $4.31\times10^{-27}$ $4.15\times10^{-33}$ $2.70\times10^{-104}$ $9.40\times10^{-2}$ $1.92\times10^{-21}$ $6.56\times10^{-26}$
    均值 $2.56\times10^{3}$ 133 $1.33\times10^{3}$ 204 533 $3.32\times10^{-15}$
    标准差 $3.91\times10^{3}$ 942 $2.49\times10^{3}$ 988 $1.63\times10^{3}$ $1.12\times10^{-14}$
    成功率(%) 64 98 76 0 90 100
    $f_{6}(x)$ 最小值 0 0 0 $2.98\times10^{-13}$ 0 0
    均值 $1.84$ $3.69\times10^{-2}$ $1.82$ $2.43\times10^{-2}$ $2.82\times10^{-2}$ $2.03\times10^{-2}$
    标准差 $12.7$ $2.92\times10^{-2}$ $12.7$ $2.08\times10^{-2}$ $2.80\times10^{-2}$ $2.35\times10^{-2}$
    成功率(%) 12 14 28 34 36 40
    $f_{7}(x)$ 最小值 $2.35\times10^{-32}$ $2.35\times10^{-32}$ $2.35\times10^{-32}$ $3.77\times10^{-16}$ $2.35\times10^{-32}$ $2.35\times10^{-32}$
    均值 $2.35\times10^{-32}$ $2.43\times10^{-32}$ $2.60\times10^{-1}$ $3.46\times10^{-9}$ $2.37\times10^{-32}$ $ 2.35\times10^{-32}$
    标准差 $2.73\times10^{-34}$ $4.49\times10^{-33}$ $5.17\times10^{-1}$ $1.70\times10^{-8}$ $1.09\times10^{-33}$ $2.80\times10^{-48}$
    成功率(%) 100 100 52 100 100 100
    $f_{8}(x)$ 最小值 0 0 0 0 0 0
    均值 200 0 401 0 0 0
    标准差 $1.41\times10^{3}$ 0 $1.97\times10^{3}$ 0 0 0
    成功率(%) 98 100 62 100 100 100
    下载: 导出CSV

    表  3  不同$\gamma_i(k)$的EFPSO算法统计结果比较

    Table  3  The statistical results of the EFPSO algorithm with different $\gamma_i(k)$ are compared

    $\gamma_i(k)=0.2$ $\gamma_i(k)=0.3$ $\gamma_i(k)=0.4$ $\gamma_i(k)=0.5$ $\gamma_i(k)=0.6$ $\gamma_i(k)=0.7$
    $f_{1}(x)$ 最小值 $1.42\times10^{-25}$ $2.31\times10^{-101}$ $1.69\times10^{-139}$ $6.03\times10^{-90}$ $7.91\times10^{-53}$ $5.14\times10^{-30}$
    均值 $5.14\times10^{-35}$ $3.34\times10^{-60}$ $1.63\times10^{-75}$ $4.32\times10^{-65}$ $2.24\times10^{-32}$ $7.98\times10^{-7}$
    标准差 $3.21\times10^{-35}$ $3.95\times10^{-60}$ $7.32\times10^{-75}$ $3.98\times10^{-65}$ $3.41\times10^{-32}$ $5.31\times10^{-7}$
    成功率(%) 100 100 100 100 100 100
    $f_{2}(x)$ 最小值 $2.60\times10^{-15}$ $2.66\times10^{-15}$ $2.66\times10^{-15}$ $2.66\times10^{-15}$ $3.45\times10^{-12}$ $2.97\times10^{-7}$
    均值 $3.91\times10^{-14}$ $6.29\times10^{-15}$ $5.50\times10^{-15}$ $7.14\times10^{-14}$ $3.63\times10^{-10}$ $5.48\times10^{-7}$
    标准差 $4.32\times10^{-14}$ $8.91\times10^{-15}$ $1.45\times10^{-15}$ $8.93\times10^{-14}$ $2.97\times10^{-10}$ $6.92\times10^{-7}$
    成功率(%) 100 100 100 100 100 100
    $f_{3}(x)$ 最小值 $9.01$ $12.6$ $4.97$ $9.12$ $13.1$ $11.1$
    均值 $18.3$ $17.2$ $9.50$ $12.9$ $20.0$ $13.8$
    标准差 $6.59$ $3.33$ $2.44$ $3.39$ $8.18$ $2.23$
    成功率(%) 100 100 100 100 100 100
    $f_{4}(x)$ 最小值 $1.69\times10^{-24}$ $1.59\times10^{-24}$ $1.99\times10^{-32}$ $2.24\times10^{-40}$ $2.41\times10^{-35}$ $5.71\times10^{-20}$
    均值 $5.38\times10^{-16}$ $1.78\times10^{-16}$ $2.96\times10^{-18}$ $2.56\times10^{-32}$ $7.98\times10^{-22}$ $6.94\times10^{-7}$
    标准差 $7.69\times10^{-17}$ $0.97\times10^{-16}$ $1.32\times10^{-17}$ $1.68\times10^{-32}$ $6.54\times10^{-22}$ $3.89\times10^{-7}$
    成功率(%) 100 100 100 100 100 100
    $f_{5}(x)$ 最小值 $2.31\times10^{-28}$ $7.34\times10^{-30}$ $6.56\times10^{-26}$ $7.19\times10^{-20}$ $5.34\times10^{-20}$ $1.53\times10^{-9}$
    均值 $5.46\times10^{-15}$ $3.84\times10^{-15}$ $3.32\times10^{-15}$ $7.34\times10^{-9}$ $8.91\times10^{-9}$ $8.72\times10^{-5}$
    标准差 $2.49\times10^{-15}$ $2.96\times10^{-15}$ $1.12\times10^{-14}$ $1.36\times10^{-9}$ $6.37\times10^{-9}$ $6.54\times10^{-5}$
    成功率(%) 100 100 100 100 100 100
    $f_{6}(x)$ 最小值 $2.72\times10^{-7}$ $1.31\times10^{-7}$ 0 $5.18\times10^{-7}$ $9.07\times10^{-7}$ $1.01\times10^{-6}$
    均值 $1.54\times10^{-2}$ $1.19\times10^{-2}$ $2.03\times10^{-2}$ $4.45\times10^{-3}$ $1.03\times10^{-2}$ $2.40\times10^{-2}$
    标准差 $3.04\times10^{-2}$ $9.57\times10^{-3}$ $2.35\times10^{-2}$ $6.16\times10^{-3}$ $1.05\times10^{-2}$ $3.15\times10^{-2}$
    成功率(%) 30 40 40 42 38 36
    $f_{7}(x)$ 最小值 $2.35\times10^{-32}$ $2.35\times10^{-32}$ $2.35\times10^{-32}$ $2.35\times10^{-32}$ $4.67\times10^{-20}$ $2.37\times10^{-16}$
    均值 $2.43\times10^{-32}$ $2.35\times10^{-32}$ $2.35\times10^{-32}$ $2.35\times10^{-32}$ $8.96\times10^{-20}$ $ 8.91\times10^{-9}$
    标准差 $3.71\times10^{-34}$ $3.69\times10^{-33}$ $2.80\times10^{-48}$ $4.96\times10^{-33}$ $7.69\times10^{-20}$ $7.34\times10^{-8}$
    成功率(%) 100 100 100 100 100 100
    $f_{8}(x)$ 最小值 0 0 0 0 0 0
    均值 0 0 0 0 0 0
    标准差 0 0 0 0 0 0
    成功率(%) 100 100 100 100 100 100
    下载: 导出CSV

    表  4  测试算法的信噪比和均方误差

    Table  4  SNR and MSE of test algorithm

    算法 信噪比 (dB) 均方误差
    EMD 28.3163 0.2429
    VMD 28.4436 0.2394
    PSO-VMD 28.4799 0.2384
    本文算法 28.6010 0.2351
    下载: 导出CSV
  • [1] Wang C, Han F, Zhang Y, Lu J Y. An SAE-based resampling SVM ensemble learning paradigm for pipeline leakage detection. Neurocomputing, 2020, 403: 237-246 doi: 10.1016/j.neucom.2020.04.105
    [2] 王东风, 孟丽. 粒子群优化算法的性能分析和参数选择. 自动化学报, 2016, 42(10): 1552-1561

    Wang Dong-Feng, Meng Li. Performance analysis and parameter selection of PSO algorithms. Acta Automatica Sinica, 2016, 42(10): 1552-1561
    [3] Shi Y H, Eberhart R C. Parameter selection in particle swarm optimization. In: Proceedings of the 7th International Conference on Evolutionary Programming. San Diego, USA: ACM, 1998. 591−600
    [4] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255 doi: 10.1109/TEVC.2004.826071
    [5] Liu W B, Wang Z D, Yuan Y, Zeng N Y, Hone K, Liu X H. A novel Sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Transactions on Cybernetics, 2019, 1-10
    [6] Jana B, Mitra S, Acharyya S. Repository and mutation based particle swarm optimization (RMPSO): A new PSO variant applied to reconstruction of gene regulatory network. Applied Soft Computing, 2019, 74: 330-355 doi: 10.1016/j.asoc.2018.09.027
    [7] Liu B, Wang L, Jin Y H, Tang F, Huang D X. Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 2005, 25(5): 1261-1271
    [8] Kennedy J, Mendes R. Population structure and particle swarm performance. In: Proceedings of the Congress on Evolutionary Computation. Honolulu, HI, USA: IEEE, 2002. 1671−1676
    [9] Zeng N Y, Wang Z D, Liu W B, Zhang H, Hone K, Liu X H. A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Transactions on Cybernetics, 2022, 52(9): 9290−9301
    [10] Dong H L, Hou N, Wang Z D, Ren W J. Variance-constrained state estimation for complex networks with randomly varying topologies. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 2757-2768
    [11] Dong H L, Hou N, Wang Z D. Fault estimation for complex networks with randomly varying topologies and stochastic inner couplings. Automatica, 2020, 112: Article No. 108734
    [12] Moslehi F, Haeri A, Martínez-Álvarez F. A novel hybrid GA-PSO framework for mining quantitative association rules. Soft Computing, 2020, 24: 4645–4666 doi: 10.1007/s00500-019-04226-6
    [13] Wu Z H, Wu Z C, Zhang J. An improved FCM algorithm with adaptive weights based on SA-PSO. Neural Computing and Applications, 2017, 28(10): 3113-3118 doi: 10.1007/s00521-016-2786-6
    [14] Liu W B, Wang Z D, Liu X H, Zeng N Y, Bell D. A novel particle swarm optimization approach for patient clustering from emergency departments. IEEE Transactions on Evolutionary Computation, 2018, 23(4): 632-644
    [15] Zeng N Y, Wang Z D, Zhang H, Alsaadi F E. A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay. Cognitive Computation, 2016, 8(2): 143-152 doi: 10.1007/s12559-016-9396-6
    [16] Song B Y, Wang Z D, Zou L. On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cognitive Computation, 2017, 9(1): 5-17 doi: 10.1007/s12559-016-9442-4
    [17] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544
    [18] Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942−1948
    [19] Shi Y H, Eberhart R C. Empirical study of particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation. Washington, DC, USA: ACM, 1999. 1945−1950
    [20] Li J H, Dong H L, Wang Z D, Bu X Y. Partial-neurons-based passivity-guaranteed state estimation for neural networks with randomly occurring time-delays, IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3747-3753 doi: 10.1109/TNNLS.2019.2944552
    [21] Dong H L, Wang Z D, Shen B, Ding D R. Variance-constrained H control for a class of nonlinear stochastic discrete time-varying systems: The event-triggered design. Automatica, 2016, 72, 28-36 doi: 10.1016/j.automatica.2016.05.012
    [22] Wang C, Zhang Y, Song J B, Liu Q Q, Dong H L. A novel optimized SVM algorithm based on PSO with saturation and mixed time-delays for classification of oil pipeline leak detection. Systems Science & Control Engineering, 2019, 7(1): 75-88
    [23] Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73 doi: 10.1109/4235.985692
    [24] 刘建昌, 权贺, 于霞, 何侃, 李镇华. 基于参数优化VMD和样本熵的滚动轴承故障诊断. 自动化学报, 2020, 1-12

    Liu Jian-Chang, Quan He, Yu Xia, He Kan, Li Zhen-Hua. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy. Acta Automatica Sinica, 2020, 1-12
    [25] 何潇, 郭亚琦, 张召, 贾繁林, 周东华. 动态系统的主动故障诊断技术. 自动化学报, 2020, 46(08): 1557-1570

    He Xiao, Guo Ya-Qi, Zhang Zhao, Jia Fan-Lin, Zhou Dong-Hua. Active fault diagnosis for dynamic systems. Acta Automatica Sinica, 2020, 46(08): 1557-1570
    [26] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用. 西安交通大学学报, 2015, 49(5): 73−81

    Tang Gui-Ji, Wang Xiao-Long. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing. Journal of Xi'an Jiaotong University, 2015, 49(5): 73−81
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1507
  • HTML全文浏览量:  325
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 录用日期:  2020-12-01
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回