2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于USARSim和ROS的无人平台编队仿真系统

张浩杰 苏治宝 杨甜甜

张浩杰, 苏治宝, 杨甜甜. 基于USARSim和ROS的无人平台编队仿真系统. 自动化学报, 2020, 46(x): 1−11 doi: 10.16383/j.aas.c200102
引用本文: 张浩杰, 苏治宝, 杨甜甜. 基于USARSim和ROS的无人平台编队仿真系统. 自动化学报, 2020, 46(x): 1−11 doi: 10.16383/j.aas.c200102
Zhang Hao-Jie, Su Zhi-Bao, Yang Tian-Tian. Design of team formation simulation system for unmanned ground vehicles based on USARSim and ROS. Acta Automatica Sinica, 2020, 46(x): 1−11 doi: 10.16383/j.aas.c200102
Citation: Zhang Hao-Jie, Su Zhi-Bao, Yang Tian-Tian. Design of team formation simulation system for unmanned ground vehicles based on USARSim and ROS. Acta Automatica Sinica, 2020, 46(x): 1−11 doi: 10.16383/j.aas.c200102

基于USARSim和ROS的无人平台编队仿真系统

doi: 10.16383/j.aas.c200102
基金项目: 国家自然科学基金青年科学基金项目(61806183), 中央高校基本科研业务费项目(FRF-TP-19-006B1), 北京科技大学顺德研究生院科技创新专项资金(BK19AE014)资助
详细信息
    作者简介:

    张浩杰:北京科技大学自动化学院副教授. 2008年获中南大学交通设备信息工程专业工学学士学位, 2013年获北京理工大学车辆工程专业工学博士学位. 主要研究方向为地面无人平台的路径规划与跟踪控制. 本文通信作者. E-mail: haojie.bit@gmail.com

    苏治宝:中国北方车辆研究所兵器地面无人平台研发中心研究员, 副主任. 1995年获吉林大学工学学士学位, 2001年获东北大学工学硕士学位, 2004年获北京理工大学工学博士学位. 主要研究方向为机器人控制系统架构及软件框架. E-mail: bitszb@163.com

    杨甜甜:中国兵器科学研究院研究员. 2002年获哈尔滨工业大学工学学士学位, 并于2008年获哈尔滨工业大学控制科学与工程专业工学博士学位. 主要研究方向为地面无人平台协同控制、任务规划与决策技术. E-mail: creance@126.com

Design of Team Formation Simulation System for Unmanned Ground Vehicles Based on USARSim and ROS

Funds: Supported by National Science Foundation of China (61806183), the Fundamental Research Funds for the Central Universities (FRF-TP-19-006B1), Scientific and Technological Innovation Foundation of Shunde Graduate School of University of Science and Technology Beijing (BK19AE014)
  • 摘要: 针对越野非结构化环境下的地面无人平台(Unmanned Ground Vehicle, UGV)编队仿真系统存在功能模块不完善及算法集成测试困难等问题, 为便于有效测试地面无人平台编队协同控制方法性能及其适用的任务场景, 降低编队协同系统的开发成本, 本文提出了一种基于Unified System for Automation and Robotics Simulator(USARSim)和Robot Operating System(ROS)的地面无人平台编队协同仿真系统. 该仿真系统由人机交互界面、基于ROS架构的地面无人平台控制系统和基于USARSim的虚拟仿真场景三个部分组成, 其测试对象为地面无人平台编队协同控制算法. 通过充分利用ROS中集成的开源导航算法和USARSim中丰富的机器人及环境模型, 该系统为研究地面无人平台编队协同控制算法提供了新的思路和快速验证工具. 以领航者-跟随者编队控制方法为例进行该仿真系统的性能测试, 实验结果表明, 该仿真系统能够在外界条件一致的情况下完成对编队协同控制方法的性能测试, 系统稳定可靠.
  • 图  1  基于USARSim和ROS的地面无人平台编队协同仿真系统结构

    Fig.  1  The architecture of formation simulation system for UGV based on USARSim and ROS

    图  2  人机交互界面

    Fig.  2  The GUI OF human-machine interface

    图  3  人机交互界面中的任务模块

    Fig.  3  Task modules in human-machine interface

    图  4  基于ROS架构的地面无人平台控制系统结构

    Fig.  4  The architecture of control system for UGV based on ROS

    图  5  地面无人平台控制器流程图

    Fig.  5  The flowchart of UGV controller

    图  6  ROS-USARSim接口数据流

    Fig.  6  The data flow of ROS-USARSim interface

    图  7  USARSim中的环境示例

    Fig.  7  Sample of 3D environments in USARSim

    图  8  USARSim中的地面无人平台模型

    Fig.  8  Models of UGVs in USARSim

    图  9  三角形编队示意图

    Fig.  9  The diagram of triangle formation

    图  10  仿真测试中的地面无人平台模型

    Fig.  10  The UGV model in simulation

    图  11  地面无人平台编队运动轨迹

    Fig.  11  The travelling path in formation control of UGV

    图  12  三角形编队任务中的速度变化

    Fig.  12  Velocity value during triangle formation control

    图  13  三角形编队任务中的跟随者航向角误差

    Fig.  13  Heading angle error for followers during triangle formation control

    图  14  三角形编队任务中的跟随者轨迹曲线

    Fig.  14  Trajectories for followers during triangle formation control

    表  1  仿真测试硬件配置

    Table  1  Hardware configuration in simulation

    计算机编号 操作系统 IP地址 角色
    1# Windows10 192.168.0.200 人机交互
    2# Windows10 192.168.0.201 USARSim
    3# ROS Melodic 192.168.0.100 领航者(UGV_0)
    4# ROS Melodic 192.168.0.101 跟随者(UGV_1)
    5# ROS Melodic 192.168.0.102 跟随者(UGV_2)
    下载: 导出CSV

    表  2  领航者-跟随者编队方法在不同仿真平台下的测试对比

    Table  2  The comparison of leader-follower formation in different simulation systems

    对比项 本文仿真系统 MATLAB LabVIEW
    UGV_1位置 $x$ 绝对误差 2.18 cm $\Delta x\to 0$ $\Delta x\to 0$
    UGV_1位置 $y$ 绝对误差 3.14 cm $\Delta y\to 0$ $\Delta y\to 0$
    UGV_1航向角相对误差 0.26 $\%$ $\Delta \theta\to 0$ $\Delta \theta\to 0$
    UGV_2位置 $x$ 绝对误差 4.89 cm $\Delta x\to 0$ $\Delta x\to 0$
    UGV_2位置 $y$ 绝对误差 3.38 cm $\Delta y\to 0$ $\Delta y\to 0$
    UGV_2航向角相对误差 0.43 $\%$ $\Delta \theta\to 0$ $\Delta \theta\to 0$
    场景逼真度 $\bullet\bullet\bullet$ $\bullet$ $\bullet\bullet$
    人机交互 $\bullet\bullet\bullet$ $\bullet$ $\bullet\bullet$
    可扩展性(感知及导航) $\bullet\bullet\bullet$ $\bullet\bullet$ $\bullet$
    开发简易性 $\bullet\bullet\bullet$ $\bullet\bullet$ $\bullet$
    下载: 导出CSV
  • [1] Daniel A K. Robotic and Autonomous Systems Strategy. US Army, 2018. 1−31
    [2] Muangmin K, Wanichanon T. Formation keeping of unmanned ground vehicles. MATEC Web of Conferences, 2017, 95: 09006 doi: 10.1051/matecconf/20179509006
    [3] 黄健飞, 马彦. 基于跟随领航者的车辆自适应编队控制. 吉林大学学报(信息科学版), 2019, 37(3): 253−259

    Huang Jian-Fei, MA Yan. Adaptive formation control for vehicles based on leader-follower strategy. Journal of Jinlin University(Information Science Edition), 2019, 37(3): 253−259
    [4] Sun Z, Li B, Cai W C, Liao X H, Song Y D. Virtual leader based robust adaptive formation control of multi-unmanned ground vehicles (UGVs). In: Proceedings of the 2007 American Control Conference. NewYork, USA: IEEE, 2007. 1876−1881
    [5] 郑延斌, 席鹏雪, 王林林, 樊文鑫, 韩梦云. 基于人工势场法的多智能体编队避障方法. 计算机应用, 2018, 38(12): 3380−3384 doi: 10.11772/j.issn.1001-9081.2018051119

    Zheng Yan-Bin, Xi Peng-Xue, Wang Lin-Lin, Fan Wen-Xin, Han Meng-Yun. Obstacle avoidance method for multi-agent formation based on artificial potential field method. Journal of Computer Applications, 2018, 38(12): 3380−3384 doi: 10.11772/j.issn.1001-9081.2018051119
    [6] 郭宏达, 李永乐, 娄静涛. 车辆无人编队控制系统技术与应用分析. 军事交通学院学报, 2018, 20(6): 23−28

    Guo Hong-Da, Li Yong-Le, Lou Jing-Tao. Technology for vehicular autonomous platoon control system and its application. Journal of Military Transportation University, 2018, 20(6): 23−28
    [7] 卫恒, 吕强, 刘扬, 林辉灿, 梁冰. 基于状态切换的分布式多机器人编队控制. 兵工学报, 2019, 40(5): 1103−1112 doi: 10.3969/j.issn.1000-1093.2019.05.024

    Wei Heng, Lv Qiang, Liu Yang, Lin Hui-Can, Liang Bing. State Switching-based Distributed Multi-robot Formation Control. Acta Armamentarii, 2019, 40(5): 1103−1112 doi: 10.3969/j.issn.1000-1093.2019.05.024
    [8] Yang T, Meng Z Y, Dimarogonas D V, Johansson K H. Global consensus for discrete-time multi-agent systems with input saturation constraints. Automatica, 2014, 50(2): 499−506 doi: 10.1016/j.automatica.2013.11.008
    [9] 李润梅, 张立威, 王剑. 基于时变间距和相对角度的无人车跟随控制方法研究. 自动化学报, 2018, 44(11): 2031−2040

    Li Run-Mei, Zhang Li-Wei, Wang Jian. A control method of unmanned car following under time-varying relative distance and angle. Acta Automatica Sinica, 2018, 44(11): 2031−2040
    [10] Ren W. Consensus based formation control strategies for multi-vehicle systems. In: Proceedings of the 2006 American Control Conference. NewYork, USA: IEEE, 2006. 4237−4242
    [11] Glavaski S, Chaves M, Day R, Nag P, Williams A, Zhang W. Vehicle networks: achieving regular formation. In: Proceedings of the 2003 American Control Conference. NewYork, USA: IEEE, 2003. 4095−4100
    [12] 张瑞雷, 李胜, 陈庆伟, 杨春. 复杂地形环境下多机器人编队控制方法. 控制理论与应用, 2014, 31(4): 531−537 doi: 10.7641/CTA.2014.30924

    Zhang Rui-Lei, Li Sheng, Chen Qing-Wei, Yang Chun. Formation control for multi-robot system in complex terrain. Control Theory and Applications, 2014, 31(4): 531−537 doi: 10.7641/CTA.2014.30924
    [13] Meng D Y, Jia Y M, Du J P, Zhang J. On iterative learning algorithms for the formation control of nonlinear multi-agent systems. Automatica, 2014, 50: 291−295 doi: 10.1016/j.automatica.2013.11.009
    [14] 王晓森, 曹国华. 带有多未知性的无人车编队控制. 车辆与动力技术, 2019, 2: 43−47 doi: 10.3969/j.issn.1009-4687.2019.02.009

    Wang Xiao-Sen, Cao Guo-Hua. Formation control for unmanned vehicles with multiple unknowns. Vehicle and Power Technology, 2019, 2: 43−47 doi: 10.3969/j.issn.1009-4687.2019.02.009
    [15] 田大新, 康璐. 基于鱼群效应的无人驾驶车辆编队算法研究. 无人系统技术, 2018, 1(4): 62−67

    Tian Da-Xin, Kang Lu. Research on algorithm of unmanned vehicle formation based on fish school. Unmanned Systems Technology, 2018, 1(4): 62−67
    [16] Soni A, Hu H. Formation control for a fleet of autonomous ground vehicles: A survey. robotics, 2018, 7(67): 1−25
    [17] Krajzewicz D, Hertkorn G, Wagner P, Rossel C. SUMO(Simulation of Urban Mobility): An open-source traffic simulation. In: Proceedings of the 4th Middle East Symposium on Simulation and Modelling. NewYork, USA: IEEE, 2002. 183−187
    [18] 高力, 陆丽萍, 褚端峰, 张勇, 吴超仲. 基于图与势场法的多车道编队控制. 自动化学报, 2020, 46(1): 117−126

    Gao Li, LU Li-Ping, Chu Duan-Feng, Zhang Yong, Wu Chao-Zhong. Multi-lane convoy control based on graph and potential field. Acta Automatica Sinica, 2020, 46(1): 117−126
    [19] Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V. CARLA: An open urban driving simulator. In: Proceedings of the 1st Conference on Robot Learning. NewYork, USA: IEEE, 2017. 1−10
    [20] Goodin C, George T R, Cummins C L, Durst P J, Gates B Q, Mckinley G B. The virtual autonomous navigation environment: high fidelity simulations of sensor, environment, and terramechanics for robotics. In: Proceedings of the Thirteenth ASCE Aerospace Division Conference on Engineering, Science, Construction, and Operations in Challenging Environments. NewYork, USA: IEEE, 2012. 1441−1447
    [21] Carpin S, Lewis M, Wang J J, Balakirsky S. USARSim: a robot simulator for research and education. In: Proceedings of the IEEE International Conference on Robotics and Automation. NewYork, USA: IEEE, 2007. 1400−1405
    [22] Quigley M, Conley K, Gerkey B P, Faust J. ROS: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation Workshop on Open Source Software. NewYork, USA: IEEE, 2009. 1−6
    [23] Akash U, Ananya N, Sandeep S, Raj D. Autonomous navigation with collision avoidance using ROS. Journal of Remote Sensing GIS & Technology, 2019, 5(2): 14−18
    [24] Ceriani S, Migliavacca M. Middleware in Robotics, Internal Report for Advanced Methods of Information Technology for Autonomous Robotics, 2016
    [25] 韩青, 孙树栋, 智睿瑞. 基于纯角度观测信息的leader-followers机器人编队控制方法. 西北工业大学学报, 2015, 33(2): 244−250 doi: 10.3969/j.issn.1000-2758.2015.02.013

    Han Qing, Sun Shu-Dong, Han Rui-Rui. Bearing-only leader-followers multi-robot formation control. Journal of Northwestern Polytechnical University, 2015, 33(2): 244−250 doi: 10.3969/j.issn.1000-2758.2015.02.013
    [26] Das A K, Fierro R, Kumar V, Ostrowski J P, Spletzer J, Taylor C J. A vision-based formation control framework. IEEE Transaction on Robotics and Automation, 2002, 18(5): 813−825 doi: 10.1109/TRA.2002.803463
    [27] Madhevan B, Sreekumar M. Tracking algorithm using leader follower approach for multi robots. Procedia Engineering, 2013, 64: 1426−1435 doi: 10.1016/j.proeng.2013.09.224
    [28] Yu X, Liu L. Leader-follower formation of vehicles with velocity constraints and local coordinate frames. Science China Information Sciences, 2017, 60(7): 070206 doi: 10.1007/s11432-016-9094-1
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 录用日期:  2020-05-12

目录

    /

    返回文章
    返回