2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主视通路结构分级响应模型的轮廓检测方法

陈树楠 范影乐 房涛 武薇

陈树楠, 范影乐, 房涛, 武薇. 基于主视通路结构分级响应模型的轮廓检测方法. 自动化学报, 2020, 41(x): 1−14 doi: 10.16383/j.aas.c200046
引用本文: 陈树楠, 范影乐, 房涛, 武薇. 基于主视通路结构分级响应模型的轮廓检测方法. 自动化学报, 2020, 41(x): 1−14 doi: 10.16383/j.aas.c200046
Chen Shu-Nan, Fan Ying-Le, Fang Tao, Wu Wei. A contour detection method based on hierarchical structure response model in primary visual pathway. Acta Automatica Sinica, 2020, 41(x): 1−14 doi: 10.16383/j.aas.c200046
Citation: Chen Shu-Nan, Fan Ying-Le, Fang Tao, Wu Wei. A contour detection method based on hierarchical structure response model in primary visual pathway. Acta Automatica Sinica, 2020, 41(x): 1−14 doi: 10.16383/j.aas.c200046

基于主视通路结构分级响应模型的轮廓检测方法

doi: 10.16383/j.aas.c200046
基金项目: 国家自然科学基金资助项目(61501154)资助
详细信息
    作者简介:

    陈树楠:杭州电子科技大学自动化学院硕士研究生. 2018年获得杭州电子科技大学学士学位. 主要研究方向为计算机视觉, 图像处理. E-mail: 13616821889@163.com

    范影乐:杭州电子科技大学自动化学院教授. 2001年获浙江大学生物医学工程博士学位. 主要研究方向为神经信息学、机器视觉与机器学习. 本文通信作者. E-mail: fan@hdu.edu.cn

    房涛:杭州电子科技大学自动化学院博士研究生. 2015年获得华北水利水电大学学士学位, 目前在杭州电子科技大学攻读博士学位. 主要研究方向为模式识别, 生物启发类算法研究. E-mail: tfyzft@foxmail.com

    武薇:杭州电子科技大学自动化学院讲师. 2012年获浙江大学生物医学工程博士学位. 主要研究方向为医学信息学、计算机图像处理. E-mail: ww@hdu.edu.cn

A Contour Detection Method Based on Hierarchical Structure Response Model in Primary Visual Pathway

Funds: Supported by National Natural Science Foundation of China (61501154)
  • 摘要: 基于视通路结构分级响应与动态传递的方式, 本文提出了一种图像轮廓检测的新方法. 针对视网膜感光细胞的暗视觉特性, 建立亮度自适应的暗视野调节模型, 利用多尺度经典感受野的方位选择性, 构建高级轮廓与全局轮廓的检测路径; 模拟LGN细胞特性对信息进行纹理稀疏编码, 并结合非经典感受野的侧抑制作用抑制背景强纹理; 另外在LGN区提出微动整合机制, 减少纹理冗余信息, 再经适应性突触实现信息关联传递; 最后将初级轮廓响应跨视区前馈至V1区并经全局轮廓修正后, 与高级轮廓响应实现快速融合. 分别以RuG40、BSDS500图像库中的自然图像作为实验数据, 检测结果与基准轮廓图的平均最优P指标分别为0.50、0.32, 结果表明本方法能更有效的区分轮廓与纹理边缘, 凸显主体轮廓. 本文利用视神经细胞的内在机制以及神经信息的动态传递过程实现图像轮廓信息的编码与检测, 也为研究后续高级视皮层的视觉感知提供了新思路.
  • 图  1  暗视野调节过程示意图

    Fig.  1  The process of dark field adjustment

    图  2  动态过程编码示意图

    Fig.  2  Dynamic process coding

    图  3  算法流程图

    Fig.  3  Algorithm flowchart

    图  4  RuG40自然图像库的轮廓检测结果; 第一行为自然图像测试集; 第二行为真实轮廓图; 第三行为GD方法检测结果; 第四行为ISO方法检测结果; 第五行为SSC方法检测结果; 第六行为MNC方法检测结果; 第七行为MCI方法检测结果; 第八行为NDC方法检测结果; 第九行为本文方法检测结果.

    Fig.  4  Contour detection results of RuG40 natural image library; the first line is the natural image test sets; the second line is the true contour maps; the third line is the results of GD; the fourth line is the results of ISO; the fifth line is the results of SSC; The sixth line is the results of the MNC; the seventh line is the results of the MCI; the eighth line is the results of NDC; the ninth line is the results of my paper’s method.

    图  5  各算法模型在整个数据集的最优平均P值和单张图片的最优均值

    Fig.  5  The Pvalue of each algorithm model in the entire data set and the optimal average value of a single picture.

    图  6  部分图像在多组参数下检测结果的p值箱线图(G表示GD算法, I表示ISO算法, S表示SSC算法, M表示MNC算法, C表示MCI算法, N表示NDC算法, O表示本文算法)

    Fig.  6  P-value box plot of the detection results of some images under multiple sets of parameters (G represents the GD, I represents the ISO, S represents the SSC, M represents the MNC, C represents the MCI,N represents the NDC, and O represents the algorithm in this paper)

    图  7  BSDS500图像数据集的轮廓检测结果; 第一行为自然图像测试集; 第二行为图像真实轮廓; 第三行为GD方法检测结果; 第四行为ISO方法检测结果; 第五行为SSC方法检测结果; 第六行为MCI方法检测结果; 第七行为MNC方法检测结果; 第八行为NDC方法检测结果; 第九行为本文方法检测结果.

    Fig.  7  Contour detection results of BSDS500 image library; the first line is the natural image test sets; the second line is the true contour maps; the third line is the results of GD; the fourth line is the results of ISO; the fifth line is the results of SSC; The sixth line is the results of the MNC; the seventh line is the results of the MCI; the eighth line is the results of NDC; the ninth line is the results of my paper’s method.

    图  8  BSDS500部分图像在多组参数下检测结果的P值箱线图(G表示GD算法, I表示ISO算法, S表示SSC算法, C表示MCI算法, M表示MNC算法, N表示NDC算法, O表示本文算法)

    Fig.  8  P-value box plot of the detection results of some BSDS500 images under multiple sets of parameters (G represents the GD, I represents the ISO, S represents the SSC, C represents the MCI, M represents the MNC, N represents the NDC, and O represents the algorithm in this paper)

    图  9  各算法模型在BSDS500数据集的最优平均P值和单张图片的最优均值

    Fig.  9  The Pvalue of each algorithm model in the BSDS500 data set and the optimal average value of a single picture.

    表  1  图4中不同算法的参数设置与性能评价指标

    Table  1  Parameters and performance of the different algorihms in Fig. 4

    Image Algorihm Parameter Performance
    $\alpha $ $t$ ${e_{FP}}$ ${e_{FN}}$ $P$ FPS
    Buffalo GD - 0.10 0.35 0.23 0.58 4
    ISO 0.60 0.10 0.25 0.28 0.59 3
    SSC - 0.10 0.27 0.31 0.56 1/8
    MCI 0.80 0.15 0.23 0.27 0.60 1/22
    MNC 0.50 0.30 0.23 0.28 0.63 1/2
    NDC 0.20 0.20 0.25 0.24 0.61 1/19
    Our method 0.20 0.30 0.16 0.27 0.66 1/27
    Elephant2 GD - 0.05 0.74 0.20 0.50
    ISO 0.10 0.05 0.33 0.25 0.59
    SSC - 0.05 0.14 0.32 0.60
    MCI 0.30 0.05 0.31 0.28 0.58
    MNC 0.70 0.20 0.16 0.34 0.62
    NDC 0.60 0.20 0.28 0.27 0.59
    Our method 0.10 0.35 0.22 0.28 0.64
    Gnu GD - 0.05 0.24 0.21 0.63
    ISO 0.10 0.05 0.24 0.29 0.59
    SSC - 0.05 0.14 0.30 0.62
    MCI 0.70 0.10 0.35 0.14 0.65
    MNC 0.50 0.20 0.40 0.21 0.61
    NDC 0.10 0.10 0.24 0.17 0.67
    Our method 0.10 0.20 0.22 0.20 0.69
    Rino GD - 0.05 1.04 0.13 0.45
    ISO 1.00 0.05 0.68 0.18 0.52
    SSC - 0.05 0.38 0.22 0.60
    MCI 0.50 0.05 0.28 0.22 0.62
    MNC 0.60 0.10 0.31 0.31 0.60
    NDC 0.80 0.10 0.31 0.24 0.60
    Our method 0.90 0.15 0.26 0.29 0.63
    Lions GD - 0.05 0.25 0.44 0.49
    ISO 0.20 0.10 0.56 0.28 0.51
    SSC - 0.15 0.70 0.24 0.50
    MCI 0.80 0.15 0.51 0.29 0.51
    MNC 0.90 0.50 0.53 0.31 0.51
    NDC 0.50 0.30 0.54 0.29 0.50
    Our method 0.10 0.30 0.44 0.33 0.54
    下载: 导出CSV

    表  2  图7中不同算法的参数设置与性能评价指标

    Table  2  Parameters and performance of the different algorihms in Fig. 7

    Image Algorihm Parameter Performance
    $\alpha $ $t$ ${e_{FP}}$ ${e_{FN}}$ $P$
    197017 GD - 0.05 0.40 0.28 0.54
    ISO 0.10 0.05 0.38 0.27 0.58
    SSC - 0.10 0.48 0.29 0.53
    MCI 0.30 0.10 0.48 0.19 0.58
    MNC 0.30 0.20 0.54 0.26 0.55
    NDC 0.70 0.15 0.30 0.35 0.59
    Our method 0.50 0.20 0.28 0.34 0.60
    3096 GD - 0.05 0.48 0.03 0.66
    ISO 0.90 0.05 0.13 0.15 0.78
    SSC - 0.05 0.12 0.16 0.78
    MCI 1.00 0.05 0.08 0.27 0.72
    MNC 0.80 0.20 0.17 0.17 0.75
    NDC 1.00 0.50 0.18 0.15 0.77
    Our method 0.60 0.50 0.10 0.19 0.78
    38092 GD - 0.10 0.67 0.16 0.54
    ISO 0.90 0.10 0.31 0.31 0.58
    SSC - 0.10 0.31 0.37 0.53
    MCI 0.10 0.10 0.54 0.28 0.53
    MNC 0.50 0.20 0.60 0.31 0.52
    NDC 0.50 0.15 0.38 0.30 0.59
    Our method 0.10 0.20 0.38 0.29 0.60
    42049 GD - 0.10 0.16 0.05 0.83
    ISO 0.10 0.10 0.09 0.07 0.86
    SSC - 0.30 0.15 0.12 0.78
    MCI 0.20 0.15 0.11 0.11 0.82
    MNC 0.20 0.60 0.15 0.14 0.80
    NDC 0.20 0.55 0.10 0.10 0.85
    Our method 0.20 0.60 0.09 0.10 0.86
    69020 GD - 0.05 0.49 0.20 0.59
    ISO 0.90 0.05 0.14 0.32 0.64
    SSC - 0.05 0.25 0.43 0.52
    MCI 0.60 0.05 0.11 0.21 0.75
    MNC 0.10 0.05 0.07 0.32 0.73
    NDC 0.30 0.10 0.06 0.23 0.79
    Our method 0.10 0.10 0.05 0.25 0.79
    下载: 导出CSV
  • [1] Gupta S, Mazumdar S G. Sobel edge detection algorithm. International journal of computer science and management Research, 2013, 2(2): 1578−1583
    [2] Mcilhagga W. The Canny edge detector revisited. International Journal of Computer Vision, 2011, 91(3): 251−261 doi: 10.1007/s11263-010-0392-0
    [3] Wei H, Lang B, Zuo Q. Contour detection model with multi-scale integration based on non-classical receptive field. Neurocomputing, 2013, 103: 247−262 doi: 10.1016/j.neucom.2012.09.027
    [4] Lin C, Xu G, Cao Y. Contour detection model using linear and non-linear modulation based on non-CRF suppression. IET Image Processing, 2018, 12(6): 993−1003 doi: 10.1049/iet-ipr.2017.0679
    [5] 张明琦, 范影乐, 武薇. 基于初级视通路视觉感知机制的轮廓检测方法. 自动化学报, 2020, 46(2): 264−273

    ZHANG Ming-Qi, FAN Ying-Le, WU Wei. A Contour Detection Method Based on Visual Perception Mechanism in Primary Visual Pathway. Acta Automatica Sinica, 2020, 46(2): 264−273
    [6] Yedjour H, Meftah B, Lézoray O, et al. Edge detection based on Hodgkin–Huxley neuron model simulation. Cognitive processing, 2017, 18(3): 315−323 doi: 10.1007/s10339-017-0803-z
    [7] Kang X, Kong Q, Zeng Y, et al. A fast contour detection model inspired by biological mechanisms in primary vision system. Frontiers in Computational Neuroscience, 2018, 12: 28 doi: 10.3389/fncom.2018.00028
    [8] Fang T, Fan Y, Wu W. Salient contour detection on the basis of the mechanism of bilateral asymmetric receptive fields. SIGNAL IMAGE AND VIDEO PROCESSING, 2020.
    [9] Wassle H, Boycott B B. Functional architecture of the mammalian retina. Physiological reviews, 1991, 71(2): 447−480 doi: 10.1152/physrev.1991.71.2.447
    [10] Lamb T D. Why rods and cones?. Eye, 2016, 30(2): 179 doi: 10.1038/eye.2015.236
    [11] Fried S I, Münch T A, Werblin F S. Mechanisms and circuitry underlying directional selectivity in the retina. Nature, 2002, 420(6914): 411 doi: 10.1038/nature01179
    [12] De Valois R L, Cottaris N P, Mahon L E, et al. Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision research, 2000, 40(27): 3685−3702 doi: 10.1016/S0042-6989(00)00210-8
    [13] Liu J, Jia Y. A lateral inhibitory spiking neural network for sparse representation in visual cortex. In:Proceedings of International Conference on Brain Inspired Cognitive Systems . Shenyang, China: Springer-Verlag, 2012.259−267.
    [14] Li Z, Zhang J, Zhang K, et al. Visual tracking with weighted adaptive local sparse appearance model via spatio-temporal context learning. IEEE Transactions on Image Processing, 2018, 27(9): 4478−4489 doi: 10.1109/TIP.2018.2839916
    [15] Alpert S, Galun M, Brandt A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE transactions on pattern analysis and machine intelligence, 2011, 34(2): 315−327
    [16] Anderson A G, Olshausen B A, Ratnam K, et al. A neural model of high-acuity vision in the presence of fixational eye movements. In: Proceedings of 2016 50th Asilomar Conference on Signals, Systems and Computers. CA, USA: IEEE, 2016.588−592.
    [17] Abbott L, Regehr W G. Synaptic computation. Nature, 2004, 431(7010): 796 doi: 10.1038/nature03010
    [18] Poltoratski S, Maier A, Newton A T, et al. Figure-Ground Modulation in the Human Lateral Geniculate Nucleus Is Distinguishable from Top-Down Attention. Current biology: CB, 2019, 29(12): 2051−2057. e3 doi: 10.1016/j.cub.2019.04.068
    [19] Angelucci A, Sainsbury K. Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN. Journal of Comparative Neurology, 2006, 498(3): 330−351 doi: 10.1002/cne.21060
    [20] Theeuwes J. Top–down and bottom–up control of visual selection. Acta psychologica, 2010, 135(2): 77−99 doi: 10.1016/j.actpsy.2010.02.006
    [21] Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 2003, 12(7): 729−739 doi: 10.1109/TIP.2003.814250
    [22] Yang K-F, Gao S-B, Guo C-F, et al. Boundary detection using double-opponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 2015, 24(8): 2565−2578 doi: 10.1109/TIP.2015.2425538
    [23] Yang K-F, Li C-Y, Li Y-J. Multifeature-based surround inhibition improves contour detection in natural images. IEEE Transactions on Image Processing, 2014, 23(12): 5020−5032 doi: 10.1109/TIP.2014.2361210
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-20
  • 修回日期:  2020-07-12

目录

    /

    返回文章
    返回