2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“雁阵效应”的扑翼飞行机器人高效集群编队研究

尹曌 贺威 邹尧 穆新星 孙长银

尹曌, 贺威, 邹尧, 穆新星, 孙长银. 基于“雁阵效应”的扑翼飞行机器人高效集群编队研究. 自动化学报, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190900
引用本文: 尹曌, 贺威, 邹尧, 穆新星, 孙长银. 基于“雁阵效应”的扑翼飞行机器人高效集群编队研究. 自动化学报, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190900
Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient Formation of Flapping-Wing Aerial Vehicles Based on Wild Geese Queue Effect. Acta Automatica Sinica, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190900
Citation: Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient Formation of Flapping-Wing Aerial Vehicles Based on Wild Geese Queue Effect. Acta Automatica Sinica, 2020, 46(x): 1−13 doi: 10.16383/j.aas.c190900

基于“雁阵效应”的扑翼飞行机器人高效集群编队研究

doi: 10.16383/j.aas.c190900
基金项目: 国家自然科学基金(61933001, 61921004), 北京科技大学中央高校基本科研业务费专项资金(FRF-TP-19-001C2), 北京高校高精尖学科“北京科技大学—人工智能科学与工程”资助
详细信息
    作者简介:

    尹曌:北京科技大学自动化学院控制科学与工程专业博士研究生. 2016年获得电子科技大学自动化工程学院控制工程专业硕士学位. 主要研究方向为扑翼飞行机器人控制, 自适应控制, 多智能体控制. E-mail: zyhtf@umsystem.edu

    贺威:北京科技大学自动化学院教授. 2006年获得华南理工大学自动化学院学士学位, 2011年获得新加坡国立大学电气工程与计算机科学系博士学位. 主要研究方向为机器人学, 分布参数系统控制, 扑翼飞行机器人控制, 振动控制和智能控制系统. 本文通信作者. E-mail: weihe@ieee.org

    邹尧:北京科技大学自动化学院副教授. 2010年获得大连理工大学自动化学院学士学位, 2016年获得北京航空航天大学控制科学与工程博士学位. 主要研究方向为非线性控制, 无人机控制, 多智能体控制. E-mail: zouyao@ustb.edu.cn

    穆新星:北京科技大学自动化学院控制科学与工程专业博士研究生. 主要研究方向为扑翼飞行机器人控制, 智能控制, 系统建模. E-mail: muxinxing@sina.cn

    孙长银:东南大学自动化学院教授. 1996年获得四川大学应用数学专业理学学士学位. 分别于2001年, 2004年获得东南大学硕士和博士学位. 主要研究方向为智能控制, 飞行器控制, 模式识别和优化理论. E-mail: cysun@seu.edu.cn

Efficient Formation of Flapping-Wing Aerial Vehicles Based on Wild Geese Queue Effect

Funds: Supported by National Natural Science Foundation of China (61933001, 61921004), Fundamental Research Funds for the China Central Universities of University of Science and Technology Beijing (FRF-TP-19-001C2), and Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing
  • 摘要: 本文借鉴“雁阵效应”, 研究了扑翼飞行机器人高效集群编队飞行问题. 通过对“V”字雁阵的分析得知, 当前排大雁(简称头雁)和后排大雁(简称从雁)保持某一合适的相对位置偏移时, 后排大雁可有效利用前排大雁挥翅产生的上洗涡流, 从而节省体能; 并且, 雁阵通过阵型的变换, 可以实现能量整体消耗的均衡性, 确保长航时飞行. 仿照该“雁阵效应”, 分析得出耗能最少的扑翼飞行机器人集群阵型排布方式, 并设计了阵型变换机制, 实现集群能量整体消耗的最优性和均衡性. 在此基础上, 参考雁群的交互方式, 设计了一种使用局部信息的控制方法, 保证最优阵型的稳定维持以及阵型间的灵活变换. 最后, 仿真结果验证了所提理论结果的有效性.
  • 图  1  锐角“V”字阵型示意图( $\alpha < 90^{\circ}$ )

    Fig.  1  “V” configuration with an acute angle ( $\alpha < 90^{\circ}$ )

    图  2  钝角“V”字阵型示意图( $\alpha > 90^{\circ}$ )

    Fig.  2  “V” configuration with an obtuse angle ( $\alpha > 90^{\circ}$ )

    图  3  雁间距及翼尖涡流示意图

    Fig.  3  The schematic diagrams of spacing between wild goose and vortex formed by wingtip

    图  4  扑翼飞行机器人飞行涡流模型俯视图

    Fig.  4  Top view of two Flapping-Wing Aerial Vehicles

    图  5  扑翼飞行机器人飞行涡流模型后视图

    Fig.  5  View from behind of two Flapping-Wing Aerial Vehicles

    图  6  扑翼飞行机器人“僚机”机翼升力偏转侧视图

    Fig.  6  Sideview of follower's wing lift rotation

    图  7  两机纵向间距为2b时升力变化关于横向间距、垂向间距3维曲线图

    Fig.  7  3D curve of lift variation with respect to lateral and vertical distances with longitudinal distance 2b

    图  8  两机纵向间距为2b时阻力变化关于横向间距、垂向间距3维曲线图

    Fig.  8  3D curve of drag variation with respect to lateral and vertical distances with longitudinal distance 2b

    图  9  扑翼飞行机器人集群编队阵型

    Fig.  9  Configuration of Flapping-Wing Aerial Vehicles

    图  10  扑翼飞行机器人集群阵型变换

    Fig.  10  Reconfiguration of Flapping-Wing Aerial Vehicles

    图  11  扑翼飞行机器人集群编队控制框图

    Fig.  11  Formation control block diagram of Flapping-Wing Aerial Vehicles

    图  12  扑翼飞行机器人集群编队飞行及阵型变换三维图

    Fig.  12  3D formation snapshot of Flapping-Wing Aerial Vehicles

    图  13  1号和2号扑翼飞行机器人相对位置分量

    Fig.  13  Relative position components between Flapping-Wing Aerial Vehicles 1 and 2

    图  14  1号和3号扑翼飞行机器人相对位置分量

    Fig.  14  Relative position components between Flapping-Wing Aerial Vehicles 1 and 3

    图  15  2号和4号扑翼飞行机器人相对位置分量

    Fig.  15  Relative position components between Flapping-Wing Aerial Vehicles 2 and 4

    图  16  3号和5号扑翼飞行机器人相对位置分量

    Fig.  16  Relative position components between Flapping-Wing Aerial Vehicles 3 and 5

    图  17  扑翼飞行机器人飞行速度曲线

    Fig.  17  Velocities of Flapping-Wing Aerial Vehicles

    图  18  扑翼飞行机器人飞行航向角曲线

    Fig.  18  Yaws of Flapping-Wing Aerial Vehicles

    图  19  扑翼飞行机器人飞行功率消耗曲线

    Fig.  19  Power of Flapping-Wing Aerial Vehicles

    图  20  2号扑翼飞行机器人基于不同的编队阵型下的飞行功率消耗曲线

    Fig.  20  Power of Flapping-Wing Aerial Vehicles 2 in different formations

    图  21  扑翼飞行机器人集群编队飞行三维虚拟仿真实验图

    Fig.  21  3D virtual simulation snapshot for formation of Flapping-Wing Aerial Vehicles

    表  1  扑翼飞行机器人基本参数

    Table  1  Parameters of Flapping-Wing Aerial Vehicles

    名称 符号 参数 单位
    机翼翼面面积 S 0.175 m2
    翼展 b 0.8 m
    展弦比 AR 3.66
    飞机质量 m 0.1 kg
    机翼升力曲线斜率 aW 8.2 rad−1
    升力系数 CL 1.0
    动压 q 16.125 kg/m2
    下载: 导出CSV

    表  2  扑翼飞行机器人仿真参数

    Table  2  Simulation parameters of Flapping-Wing Aerial Vehicles

    扑翼机编号 x (m) y (m) z (m) v (m/s) γ (°)
    扑翼机1号 0 0 2 1 0
    扑翼机2号 −0.8 −2 2 3 10
    扑翼机3号 0.8 −4 2 3 −10
    扑翼机4号 −1.6 −3 2 3 20
    扑翼机5号 1.6 −4 2 2 −20
    下载: 导出CSV
  • [1] Bialek W, Cavagna A, Giardina I, et al. Social interactions dominate speed control in poising natural flocks near criticality. Proceedings of the National Academy of Sciences, 2014, 111(20): 7212−7217 doi: 10.1073/pnas.1324045111
    [2] 贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展. 自动化学报, 2017, 43(5): 685−696

    He W, Ding S, Sun C. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685−696
    [3] Ramezani A, Chung S, Hutchinson S. A biomimetic robotic platform to study flight specializations of bats. Science Robotics, 2017, 2(3): eaal2505 doi: 10.1126/scirobotics.aal2505
    [4] He W, Huang H, Chen Y, et al. Development of an autonomous flapping-wing aerial vehicle. Science China Information Science, 2017, 60(6): 063201 doi: 10.1007/s11432-017-9077-1
    [5] Chen Y, Wang H, Wu L, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2017, 2(11): eaao5619 doi: 10.1126/scirobotics.aao5619
    [6] Yu D, Chen CL P. Automatic leader-follower persistent formation generation with minimum agent-movement in various switching topologies. IEEE Transactions on Cybernetics, 2019, 2(11): 1−13
    [7] Pachter M, D’Azzo J, Proud A, et al. Tight formation flight control. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246−254 doi: 10.2514/2.4735
    [8] Qiu H, Duan H. Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dynamics, 2014, 78(3): 1973−1988 doi: 10.1007/s11071-014-1579-7
    [9] 杨之元, 段海滨, 范彦铭. 基于莱维飞行鸽群优化的仿雁群无人机编队控制器设计. 中国科学: 技术科学, 2018, 42(2): 161−169

    Yang Z, Duan H, Fan Y. Unmanned aerial vehicle formation controller design via the behavior mechanism in wild geese based on Levy flight pigeon-inspired optimization. Science Sinica Technologica, 2018, 42(2): 161−169
    [10] 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队. 中国科学: 技术科学, 2017, 47(3): 230−238 doi: 10.1360/N006-00138

    Zhou Z, Duan H, Fan Y. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese. Science Sinica Technologica, 2017, 47(3): 230−238 doi: 10.1360/N006-00138
    [11] Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413: 697−698 doi: 10.1038/35099670
    [12] 邓婉, 王新民, 王晓燕, 肖亚辉. 无人机编队队形保持变换控制器设计. 计算机仿真, 2011, 28(10): 73−77 doi: 10.3969/j.issn.1006-9348.2011.10.018

    Deng W, Wang X, Wang X, Xiao Y. Controller design of UAVs formation keep and change. Computer Integrated Manufacturing Systems, 2011, 28(10): 73−77 doi: 10.3969/j.issn.1006-9348.2011.10.018
    [13] Ren W, Beard R. Decentralized scheme for spacecraft formation flying via the virtual structure approach. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 73−82 doi: 10.2514/1.9287
    [14] Saska M, Baca T, Thomas J. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Autonomous Robots, 2017, 41(4): 919−944 doi: 10.1007/s10514-016-9567-z
    [15] Nageli T, Conte C, Domahidi A, et al. Environment-independent formation flight for micro aerial vehicles. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: 1141-1146
    [16] Lu K, Xia Y. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica, 2013, 49(12): 3591−3599 doi: 10.1016/j.automatica.2013.09.001
    [17] Meng Z, Dimarogonas D, Johansson K. Leader-follower coordinated tracking of multiple heterogeneous Lagrange systems using continuous control. IEEE Transactions on Robotics, 2013, 30(3): 739−745
    [18] Saska M, Baca T, Thomas J, Chudoba J, et al. System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization. Autonomous Robots, 2017, 41(4): 919−944 doi: 10.1007/s10514-016-9567-z
    [19] Shorakaei H, Vahdani M, Imani B, Gholami A. Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm. Robotica, 2016, 34(4): 823−836 doi: 10.1017/S0263574714001878
    [20] Liao F, Teo R, Wang J, Dong X, Lin F, Peng K. Distributed formation and reconfiguration control of VTOL UAVs. IEEE Transactions on Control Systems Technology, 2016, 25(1): 270−277
    [21] Qiu H, Duan H, Fan Y. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory & Applications, 2015, 32(10): 1298−1304
    [22] Cai D, Sun J, Wu S. UAVs formation flight control based on behavior and virtual structure. Asian Simulation Conference. Springer, Berlin, Heidelberg, 2012: 429-438
    [23] Askari A, Mortazavi M, Talebi H. UAV formation control via the virtual structure approach. Journal of Aerospace Engineering, 2013, 28(1): 04014047
    [24] Kuriki Y, Namerikawa T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control. SICE Journal of Control, Measurement, and System Integration, 2015, 28(1): 285−294
    [25] Malte A, Johan W. Kin selection and reciprocity in flight formation?. Behavioral Ecology, 2004, 15(1): 158−162 doi: 10.1093/beheco/arg109
    [26] Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413: 158−162
    [27] Voelkl B, Portugal S, Unsöld M, Usherwood J. Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. Proceedings of the National Academy of Sciences, 2015, 112(7): 2115−2120 doi: 10.1073/pnas.1413589112
    [28] Gould L, Heppner F. The vee formation of canada geese. The Auk, 1974, 91: 494−506 doi: 10.2307/4084469
    [29] 刘成功. 无人机仿生紧密编队飞行控制技术研究. 硕士学位论文. 南京: 南京航空航天大学, 2009

    Liu C. Research on biomimetic close formation flight control of UAVs. Master Thesis, Nanjing University of Aeronautics and Astronautics, 2009
    [30] Badgerow J P. An analysis of function in the formation flight of Canada geese. The Auk, 1988, 105(4): 749−755 doi: 10.1093/auk/105.4.749
    [31] Jacques D, Pachter M, Wagner G, Blake B. An analytical study of drag reduction in tight formation flight. AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2001: 4075
    [32] Dogan A, Venkataramanan S, Blake W. Modeling of aerodynamic coupling between aircraft in close proximity. Journal of Aircraft, 2005, 42(4): 941−955 doi: 10.2514/1.7579
    [33] Proud A, Pachter M, D'Azzo J. Close formation flight control. Guidance, navigation, and control conference and exhibit, 1999: 4207
    [34] Mirzaeinia A, Hassanalian M, Lee K, Mirzaeinia M. Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration. Aerospace Science and Technology, 2019, 105(4): 105398
    [35] Banazadeh A, Taymourtash N. Adaptive attitude and position control of an insect-like flapping wing air vehicle. Nonlinear Dynamics, 2016, 85(1): 47−66 doi: 10.1007/s11071-016-2666-8
    [36] Jones K D, Platzer M F. Design and development considerations for biologically inspired flapping-wing micro air vehicles. Animal Locomotion. Springer, 2010: 237-248
    [37] Gupta N, Ordonez C, Collins E G. Dynamically feasible, energy efficient motion planning for skid-steered vehicles. Autonomous Robots, 2017, 41(2): 453−471 doi: 10.1007/s10514-016-9550-8
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回