2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向工业过程的质量异常检测与故障量化评估方法

董洁 张伟 彭开香 马亮

董洁, 张伟, 彭开香, 马亮. 一种面向工业过程的质量异常检测与故障量化评估方法. 自动化学报, 2022, 48(10): 2406−2415 doi: 10.16383/j.aas.c190880
引用本文: 董洁, 张伟, 彭开香, 马亮. 一种面向工业过程的质量异常检测与故障量化评估方法. 自动化学报, 2022, 48(10): 2406−2415 doi: 10.16383/j.aas.c190880
Dong Jie, Zhang Wei, Peng Kai-Xiang, Ma Liang. A novel method of quality abnormality detection and fault quantitative assessment for industrial processes. Acta Automatica Sinica, 2022, 48(10): 2406−2415 doi: 10.16383/j.aas.c190880
Citation: Dong Jie, Zhang Wei, Peng Kai-Xiang, Ma Liang. A novel method of quality abnormality detection and fault quantitative assessment for industrial processes. Acta Automatica Sinica, 2022, 48(10): 2406−2415 doi: 10.16383/j.aas.c190880

一种面向工业过程的质量异常检测与故障量化评估方法

doi: 10.16383/j.aas.c190880
基金项目: 国家自然科学基金(62273031, 61773053, 61873024), 中央高校基本科研业务费基金(FRF-TP-19-049A1Z), 国家重点研发计划(2017YFB0306403)资助
详细信息
    作者简介:

    董洁:北京科技大学自动化学院教授. 2007年获得北京科技大学控制科学与工程博士学位. 主要研究方向为智能控制理论与应用, 过程监控与故障诊断, 复杂系统建模与控制.E-mail: dongjie@ies.ustb.edu.cn

    张伟:北京科技大学自动化学院硕士研究生. 主要研究方向为数据驱动的故障诊断与容错控制.E-mail: zw719228639@163.com

    彭开香:北京科技大学自动化学院教授. 2007年获得北京科技大学控制科学与工程博士学位. 主要研究方向为复杂工业系统故障诊断与容错控制. 本文通信作者.E-mail: kaixiang@ustb.edu.cn

    马亮:北京科技大学自动化学院副教授. 2019年获得北京科技大学控制理论与控制工程博士学位. 主要研究方向为数据驱动的故障诊断与容错控制.E-mail: mlypplover@sina.com

A Novel Method of Quality Abnormality Detection and Fault Quantitative Assessment for Industrial Processes

Funds: Supported by National Natural Science Foundation of China (62273031, 61773053, 61873024), Fundamental Research Funds for the China Central Universities (FRF-TP-19-049A1Z), and National Key Research and Develepment Program of China (2017YFB0306403)
More Information
    Author Bio:

    DONG Jie Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. She received her Ph.D. degree in control science and engineering from University of Science and Technology Beijing in 2007. Her research interest covers intelligent control theory and application, process monitoring and fault diagnosis, and complex system modeling and control

    ZHANG Wei Master student at University of Science and Technology Beijing. His research interest covers data-based fault diagnosis and fault-tolerant control

    PENG Kai-Xiang Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He received his Ph.D. degree in control science and engineering from University of Science and Technology Beijing in 2007. His research interest covers fault diagnosis and fault-tolerant control for complex industrial system. Corresponding author of this paper

    MA Liang Associate professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He received his Ph.D. degree in control science and engineering from University of Science and Technology Beijing in 2019. His research interest covers data-based fault diagnosis and fault-tolerant control

  • 摘要: 质量异常检测(Quality abnormality detection, QAD)与故障量化评估(Fault quantitative assessment, FQA)作为工业过程监控的关键环节, 是故障诊断领域的研究热点. 本文提出了一种新的工业过程质量异常检测与故障量化评估方法. 首先, 采用弹性网络(Elastic net, EN)算法构建了质量相关的变量候选集, 借助典型相关分析(Canonical correlation analysis, CCA)构建了质量相关的特征向量, 并引入支持向量数据描述(Support vector data description, SVDD)实现质量异常检测. 其次, 从优化近邻点距离的角度提出了增强局部线性嵌入(Enhanced local linear embedding, ELLE)算法, 并提出了基于CCA-ELLE的质量异常故障量化评估方法. 最后, 通过田纳西−伊斯曼(Tennessee-Eastman, TE)过程进行仿真验证, 并与传统的方法进行对比分析, 实验结果验证了所提方法的优越性和有效性.
  • 图  1  评估指标示意图

    Fig.  1  Schematic diagram of evaluation indicator

    图  2  质量异常检测与故障量化评估流程图

    Fig.  2  Flowchart of QAD and FQE

    图  3  参数分析

    Fig.  3  Analysis of parameters

    图  4  两种方法的故障检测结果

    Fig.  4  Detection results of the two methods

    图  5  CCA-ELLE二维投影

    Fig.  5  CCA-ELLE-based two-dimensional projection

    图  6  两种方法的二维投影

    Fig.  6  Two-dimensional projection results of the two methods

    图  7  两种方法的量化评估结果

    Fig.  7  Evaluation results of the two methods

    表  1  TE过程变量

    Table  1  Process variables in the TE process

    变量描述变量描述
    1) 物料 A 流量12) 气/液分离器液位
    2) 物料 D 流量13) 气/液分离器压力
    3) 物料 E 流量14) 气/液分离器出口流量
    4) 物料 C 流量15) 汽提塔液位
    5) 压缩机返回物料流量16) 汽提塔压力
    6) 反应器给料流量17) 汽提塔塔底流量
    7) 反应器压力18) 汽提塔温度
    8) 反应器液位19) 汽提塔蒸汽流量
    9) 反应器温度20) 压缩机功率
    10) 排空物料流量21) 反应器冷却水出口温度
    11) 气/液分离器温度 22) 冷凝器冷却水出口温度
    下载: 导出CSV

    表  2  验证数据集

    Table  2  Data sets used for validation

    故障程度样本数量
    正常状态样本 (TE 标准数据)500 (训练集)
    故障数据 (TE 标准数据)960 (测试集)
    正常状态样本 (生成数据 FS = 0)500 + 160 (训练集 + 测试集)
    故障程度 1 (生成数据 FS = 0.2)160 (测试集)
    故障程度 2 (生成数据 FS = 0.4)160 (测试集)
    故障程度 3 (生成数据 FS = 0.6)160 (测试集)
    故障程度 4 (生成数据 FS = 0.8)160 (测试集)
    故障程度 5 (生成数据 FS = 1.0)160 (测试集)
    下载: 导出CSV

    表  3  两种方法的性能比较

    Table  3  Comparison of the two methods

    方法误报率 (%)检测率 (%)建模运行时间 (s)
    KPLS3.7598.3750.307
    CCA-SVDD097.750.033
    下载: 导出CSV
  • [1] 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述. 自动化学报, 2017, 43(3): 349-365

    Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques in complex industrial processes. Acta Automatica Sinica, 2017, 43(3): 349-365
    [2] Krzanowski W J. A user's guide to principal components. Journal of the Royal Statistical Society: Series A, 1992, 155(1): 173-174 doi: 10.2307/2982678
    [3] Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2): 220-234 doi: 10.1016/j.arcontrol.2012.09.004
    [4] 马洁, 李钢, 陈默. 基于非线性故障重构的旋转机械故障预测方法. 自动化学报, 2014, 40(9): 2045-2049

    Ma Jie, Li Gang, Chen Mo. Fault prediction method of rotating machinery based on nonlinear fault reconstruction. Acta Automatica Sinica, 2014, 40(9): 2045-2049
    [5] 王静, 胡益, 侍洪波. 基于GMM的间歇过程故障检测. 自动化学报, 2015, 41(5): 899-905

    Wang Jing, Hu Yi, Shi Hong-Bo. Intermittent process fault detection based on GMM. Acta Automatica Sinica, 2015, 41(5): 899-905
    [6] Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56(1): 168-178
    [7] Ding S X, Yin S, Peng K X, Hao H Y, Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2239-2247 doi: 10.1109/TII.2012.2214394
    [8] Huang J P, Yan X F. Quality-driven principal component analysis combined with kernel least squares for multivariate statistical process monitoring. IEEE Transactions on Control System Technology, 2019, 27(6): 2688-2695 doi: 10.1109/TCST.2018.2865130
    [9] Wang G, Yin S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS. IEEE Transactions on Industrial Informatics, 2015, 11(2): 398-405
    [10] Jiang Y C, Yin S. Recent advances in key-performance-indicator oriented prognosis and diagnosis with a matlab toolbox: DB-KIT. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2849-2858 doi: 10.1109/TII.2018.2875067
    [11] 尚林源, 田学民, 曹玉苹, 蔡连芳. 基于PLS交叉积矩阵非相似度分析的MPC性能监控与诊断. 自动化学报, 2017, 43(2): 271-279

    Shang Lin-Yuan, Tian Xue-Min, Cao Yu-Ping, Cai Lian-Fang. Performance monitoring and diagnosis of MPC based on PLS cross product matrix non-similarity analysis. Acta Automatica Sinica, 2017, 43(2): 271-279
    [12] Chen Z, Ding S X, Zhang K. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process. Control Engineering Practice, 2016, 46: 51-58 doi: 10.1016/j.conengprac.2015.10.006
    [13] Zhang K, Peng K X, Ding S X, Chen Z W, Yang X. A correlation-based distributed fault detection method and its application to a hot tandem rolling mill process. IEEE Transactions on Industrial Electronics, 2013, 9(4): 2226-2238 doi: 10.1109/TII.2013.2243743
    [14] David M J T, Robert P W D. Support vector domain description. Pattern Recognition Letters, 1999, 20(11): 1191-1199
    [15] Khediri I B, Weihs C, Limam M. Kernel k-means clustering based local support vector domain description fault detection of multimodal processes. Expert Systems with Applications, 2012, 39(2): 2166-2171 doi: 10.1016/j.eswa.2011.07.045
    [16] Zhang C F, Peng K X, Dong J. A novel plant-wide process monitoring framework based on distributed Gap-SVDD with adaptive radius. Neurocomputing, 2019, 350: 1-12 doi: 10.1016/j.neucom.2019.04.026
    [17] Zhu K, Mei F, Zheng J. Adaptive fault diagnosis of HVCBs based on P-SVDD and P-KFCM. Neurocomputing, 2017, 240: 127-136 doi: 10.1016/j.neucom.2017.02.042
    [18] Zhu Q, Qin S J. Supervised diagnosis of quality and process faults with canonical correlation analysis. Industrial and Engineering Chemistry Research, 2019, 58(26): 11213-11223 doi: 10.1021/acs.iecr.9b00320
    [19] Ma L, Dong J, Peng K X. A novel key performance indicator oriented hierarchical monitoring and propagation path identification framework for complex industrial processes. ISA Transactions, 2020, 96(1): 1-13
    [20] Luo L J, Lovelett R J, Ogunnaike B A. Hierarchical monitoring of industrial processes for fault detection, fault grade evaluation, and fault diagnosis. AIChE Journal, 2017, 63(7): 2781-2795 doi: 10.1002/aic.15662
    [21] Song B, Zhou X G, Shi H B, Yang T. Performance indicator oriented concurrent subspace process monitoring method. IEEE Transactions on Industrial. Electronics, 2018, 65(2): 1508-1571 doi: 10.1109/TIE.2017.2733443
    [22] Yang T, Shi H B, Song B, Tan S. Operating performance assessment and non-optimal cause identification for chemical process. Canadian. Journal of Chemical. Engineering, 2017, 97(1): 1475-1487
    [23] Guo S, Sun Y, Wu F, Li Y. Integrating laplacian eigenmaps feature space conversion into deep neural network for equipment condition assessment. Automatic Control and Computer Sciences, 2018, 52(6): 465-475 doi: 10.3103/S0146411618060056
    [24] Yan H, Liu K, Zhang X. Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions. IEEE Transactions on Reliability, 2016, 65(3): 1416-1426 doi: 10.1109/TR.2016.2575449
    [25] Sun C, Wang P, Yan R Q, Gao R X, Chen X F. Machine health monitoring based on locally linear embedding with kernel sparse representation for neighborhood optimization bearing fault diagnosis. Mechanical System and Signal Processing, 2019, 114: 25-34 doi: 10.1016/j.ymssp.2018.04.044
    [26] Atamuradov V, Medjaher K, Camci F, Dersin P, Zerhouni N. Railway point machine prognostics based on feature fusion and health state assessment. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2691-2704 doi: 10.1109/TIM.2018.2869193
    [27] Zhang F, Sun K, Wu X L. A novel variable selection algorithm for multi-layer perceptron with elastic net. Neurocomputing, 2019, 361: 110-118 doi: 10.1016/j.neucom.2019.04.091
    [28] Downs J, Vogel E F. A plant-wide industrial process control problem. Computers and Chemical Engineering, 1993, 17(3): 245-255 doi: 10.1016/0098-1354(93)80018-I
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  141
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 录用日期:  2020-04-06
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2022-10-14

目录

    /

    返回文章
    返回