2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的单幅图像超分辨率重建算法综述

李佳星 赵勇先 王京华

李佳星, 赵勇先, 王京华. 基于深度学习的单幅图像超分辨率重建算法综述. 自动化学报, 2021, 47(10): 2341−2363 doi: 10.16383/j.aas.c190859
引用本文: 李佳星, 赵勇先, 王京华. 基于深度学习的单幅图像超分辨率重建算法综述. 自动化学报, 2021, 47(10): 2341−2363 doi: 10.16383/j.aas.c190859
Li Jia-Xing, Zhao Yong-Xian, Wang Jing-Hua. A review of single image super-resolution reconstruction algorithms based on deep learning. Acta Automatica Sinica, 2021, 47(10): 2341−2363 doi: 10.16383/j.aas.c190859
Citation: Li Jia-Xing, Zhao Yong-Xian, Wang Jing-Hua. A review of single image super-resolution reconstruction algorithms based on deep learning. Acta Automatica Sinica, 2021, 47(10): 2341−2363 doi: 10.16383/j.aas.c190859

基于深度学习的单幅图像超分辨率重建算法综述

doi: 10.16383/j.aas.c190859
基金项目: 国防基础科研计划(JCKY2019411B001), “111”计划(D17017), 露泉创新基金(LQ-2020-01)资助
详细信息
    作者简介:

    李佳星:长春理工大学机电工程学院硕士研究生. 主要研究方向为计算机视觉, 深度学习, 单幅图像超分辨率重建. E-mail: jiaxing4912@163.com

    赵勇先:中国科学院大学机械电子工程专业硕士研究生. 2020年获得长春理工大学学士学位. 主要研究生方向为计算机视觉和深度学习. E-mail: zyx_19980824@163.com

    王京华:长春理工大学机电工程学院讲师. 2010年获得哈尔滨工业大学博士学位. 主要研究方向为移动机器人, 无人系统, 智能控制. 本文通信作者. E-mail: hit1920s@163.com

A Review of Single Image Super-resolution Reconstruction Algorithms Based on Deep Learning

Funds: Supported by Defense Industrial Technology Development Program (JCKY2019411B001), the “111” Project of China (D17017) and Innovation Fundation of Luquan (LQ-2020-01)
More Information
    Author Bio:

    LI Jia-Xing Master student at the College of Mechanical and Electric Engineering, Changchun University of Science and Technology. Her research interest covers computer vision, deep learning, and single image super-resolution reconstruction

    ZHAO Yong-Xian Master student at the University of Chinese Academy of Sciences, majoring in Mechanical and Electronic Engineering. He received his bachelor degree from Changchun University of Science and Technology in 2020. His research interest covers computer vision and deep learning

    WANG Jing-Hua Lecturer at the College of Mechanical and Electric Engineering, Changchun University of Science and Technology. He received his Ph. D. degrees from Harbin Institute of Technology in 2010. His research interest covers mobile robots, unmanned systems and intelligent control. Corresponding author of this paper

  • 摘要: 单幅图像超分辨率(Single image super-resolution, SISR)重建是计算机视觉领域上的一个重要问题, 在安防视频监控、飞机航拍以及卫星遥感等方面具有重要的研究意义和应用价值. 近年来, 深度学习在图像分类、检测、识别等诸多领域中取得了突破性进展, 也推动着图像超分辨率重建技术的发展. 本文首先介绍单幅图像超分辨率重建的常用公共图像数据集; 然后, 重点阐述基于深度学习的单幅图像超分辨率重建方向的创新与进展; 最后, 讨论了单幅图像超分辨率重建方向上存在的困难和挑战, 并对未来的发展趋势进行了思考与展望.
  • 图  1  SRCNN网络结构[6]

    Fig.  1  The SRCNN network structure[6]

    图  2  超分辨率数据集示例

    Fig.  2  Examples of super-resolution datasets

    图  3  FSRCNN网络结构与SRCNN网络结构的对比[13]

    Fig.  3  Comparison of FSRCNN network structure and SRCNN network structure[13]

    图  4  FSRCNN网络卷积层与反卷积层的具体结构[13]

    Fig.  4  The concrete structure of convolution layer and deconvolution layer of FSRCNN network[13]

    图  5  VDSR网络结构[7]

    Fig.  5  The VDSR network structure[7]

    图  6  ESPCN网络结构[33]

    Fig.  6  The ESPCN network structure[33]

    图  7  RED-Net结构[34]

    Fig.  7  The RED-Net structure[34]

    图  8  MemNet网络结构[36]

    Fig.  8  The MemNet network structure[36]

    图  9  SRDenseNet网络结构[38]

    Fig.  9  The SRDenseNet network structure[38]

    图  10  RDN网络结构[40]

    Fig.  10  The RDN network structure[40]

    图  11  EDSR与WDSR网络结构的对比[41]

    Fig.  11  Comparison of EDSR network structure and SRCNN network structure[41]

    图  12  三种残差模块的对比[41]

    Fig.  12  Comparison of three residual blocks[41]

    图  13  NatSR网络结构[45]

    Fig.  13  The NatSR network structure[45]

    图  14  NMD结构[45]

    Fig.  14  The NMD structure[45]

    图  15  主流上采样方法

    ((a) 预上采样SR网络; (b) 后上采样SR网络; (c) 渐进上采样SR网络; (d) 迭代上下采样SR网络)

    Fig.  15  Mainstream upsampling methods

    ((a) Pre-upscaling SR network; (b) Post-upscaling SR network; (c) Progressive upscaling SR network; (d) Iterative up-and-down sampling network)

    图  16  CinCGAN网络结构[61]

    Fig.  16  The CinCGAN network structure[61]

    图  17  CinCGAN中生成器与鉴别器的结构[61]

    Fig.  17  The structure of generator and discriminator in CinCGAN[61]

    图  18  ZSSR网络结构[77]

    Fig.  18  The ZSSR network structure[77]

    图  19  振铃效应

    Fig.  19  Ringing effect

    图  20  数码相机成像原理[82]

    Fig.  20  Principle of digital camera imaging[82]

    图  21  双卷积神经网络[82]

    Fig.  21  A dual convolutional neural network[82]

    图  22  图像恢复分支[82]

    Fig.  22  The image restoration branch[82]

    图  23  部分模型的主观视觉与PSNR的比较

    Fig.  23  Comparison of subjective vision and PSNR of partial models

    表  1  常用超分辨率训练数据集

    Table  1  Widely used Super-resolution training datasets

    数据集名称图像数量图像格式图像描述平均像素[31]平均分辨率
    BSDS200[15]200JPGBSDS500的子集用于训练154, 401(432, 370)
    T91[17]91PNG车、人脸、水果、花等58, 853(264, 204)
    General-100[13]100BMP人物、动物、日常景象等181, 108(435, 381)
    下载: 导出CSV

    表  2  常用超分辨率测试数据集

    Table  2  Widely used Super-resolution testing datasets

    数据集名称图像数量图像格式图像描述平均像素平均分辨率
    Set14[11]14PNG人物、动物、自然景象230, 203(492, 446)
    BSDS100[15]100JPGBSDS500的子集用于测试154, 401(432, 370)
    Set5[10]5PNG人物、动物、昆虫等113, 491(313, 336)
    Urban100[12]100PNG建筑物774, 314(984, 797)
    Manga109[16]109PNG漫画966, 11(826, 1169)
    下载: 导出CSV

    表  3  MOS评估准则

    Table  3  The MOS assessment

    分数绝对评估相对评估
    1图像质量非常差该组中最差
    2图像质量较差差于该组中平均水平
    3图像质量一般该组中的平均水平
    4图像质量较好好于该组中的平均水平
    5图像质量非常好该组中最好
    下载: 导出CSV

    表  4  部分网络模型在基准数据集Set5、Set14的平均PSNR对比

    Table  4  The average PSNR comparison of some network models on the Set5 and Set14 benchmark datasets

    Set5Set14
    方法×2×3×4×8×2×3×4×8
    Bicubic[2]33.6630.3928.4224.3930.2327.5426.0023.19
    SRCNN[6]36.6632.7530.4925.3332.4529.3027.5023.85
    VDSR[7]37.1032.8930.8425.7232.9729.7728.0324.21
    ESPCN[33]33.1330.9029.4927.73
    SRGAN[8]30.6426.92
    LapSRN[47]37.5233.8231.5426.1433.0829.8728.1924.44
    SRDenseNet[38]32.0228.50
    EDSR[43]38.2034.7632.6226.9634.0230.6628.9424.91
    EnhanceNet[44]31.7428.42
    DBPN[53]38.0932.4727.2133.8528.8225.13
    RCAN[55]38.3334.8532.7327.4734.2330.7628.9825.40
    SRMD[61]37.7934.1231.9633.3230.0428.35
    ZSSR[77]37.3733.4231.1333.0029.8028.01
    Meta-SR[72]34.0430.5528.84
    OISR[85]38.1234.5632.3333.8030.4628.73
    下载: 导出CSV

    表  5  部分网络模型在基准数据集Set5、Set14的平均SSIM对比

    Table  5  The comparison of average SSIM of partial network models on the Set5 and Set14 benchmark datasets

    Set5Set14
    方法×2×3×4×8×2×3×4×8
    Bicubic[2] 0.9299 0.8682 0.8104 0.657 0.8687 0.7736 0.7019 0.568
    SRCNN[6] 0.9542 0.9090 0.8628 0.689 0.9067 0.8215 0.7513 0.593
    VDSR[7] 0.9587 0.9213 0.8838 0.711 0.9124 0.8314 0.7674 0.609
    FSRCNN[13] 0.9558 0.9140 0.8657 0.682 0.9088 0.8242 0.7535 0.592
    SRGAN[8] 0.8472 0.7397
    LapSRN[47]0.959 0.9227 0.8850.7380.913 0.8320 0.7720.623
    SRDenseNet[38] 0.8934 0.7782
    EDSR[43] 0.9606 0.9290 0.8984 0.775 0.9204 0.8481 0.7901 0.640
    MemNet[36] 0.9597 0.9248 0.8893 0.7414 0.9142 0.8350 0.7723 0.6199
    DBPN[53]0.9600.8980.7840.9190.7860.648
    RCAN55] 0.9617 0.9305 0.9013 0.7913 0.9225 0.8494 0.7910 0.6553
    SRMD[61]0.9600.9250.8930.9150.8370.777
    ZSSR[77] 0.9570 0.9188 0.8796 0.9108 0.8304 0.7651
    Meta-SR[72] 0.9213 0.8466 0.7872
    OISR[85] 0.9609 0.9284 0.8968 0.9196 0.8450 0.7845
    下载: 导出CSV

    表  6  部分网络模型在基准数据集Set5、Set14和BSDS100的×4尺度上的MOS对比

    Table  6  The MOS comparison of some network models at ×4 of the benchmark datasets Set5, Set14 and BSDS100

    方法Set5Set14BSDS100
    Bicubic[2]1.971.801.47
    SRCNN[6]2.572.261.87
    ESPCN[33]2.892.522.01
    DRCN[37]3.262.842.12
    SRResNet[8]3.372.982.29
    SRGAN[8]3.583.723.56
    HR4.324.324.46
    下载: 导出CSV

    表  7  部分网络模型在各测试数据集上的运行时间对比

    Table  7  The comparison of running time of partial network models on each testing datasets

    方法深度学习框架CPU/GPU测试数据集上采样因子运行时间 (s)
    SRCNN[6]CaffeCPUSet5×32.23
    VDSR[7]MatConvNetCPUSet5×30.13
    ESPCN[33]TheanoCPUSet14×30.26
    FSRCNN[13]CaffeCPUSet14×30.061
    LapSRN[47]MatConvNetGPUSet14×40.04
    MemNet[36]CaffeGPUSet5×30.4
    EnhanceNet[44]TensorflowGPUSet5×40.009
    MS-LapSRN[69]MatConvNetGPUUrban100×40.06
    ZSSR[77]GPUBSDS100×29
    Meta-SR[72]GPUBSDS100×20.033
    下载: 导出CSV
  • [1] Duchon C E. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 1979, 18(8): 1016−1022 doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    [2] Keys R. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153−1160 doi: 10.1109/TASSP.1981.1163711
    [3] Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution. IEEE Computer Graphics and Applications, 2002, 22(2): 56−65 doi: 10.1109/38.988747
    [4] Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA: IEEE, 2004.
    [5] Sun J, Xu Z B, Shum H Y. Image super-resolution using gradient profile prior. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK, USA: IEEE, 2008. 1−8
    [6] Dong C, Loy C C, He K M, Tang X O. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295−307 doi: 10.1109/TPAMI.2015.2439281
    [7] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1646−1654
    [8] Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 105−114
    [9] Ignatov A, Kobyshev N, Timofte R, Vanhoey K, Van Gool L. WESPE: Weakly supervised photo enhancer for digital cameras. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE, 2018.
    [10] Bevilacqua M, Roumy A, Guillemot C, Morel M L A. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the 2012 British Machine Vision Conference. Surrey, UK: BMVA Press, 2012. 135.1−135.10
    [11] Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations. In: Proceedings of the 7th International Conference on Curves and Surfaces. Avignon, France: Springer, 2010. 711−730
    [12] Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 5197−5206
    [13] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 391−407
    [14] Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV). Vancouver, BC, Canada: IEEE, 2001. 416−423
    [15] Arbeláez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898−916 doi: 10.1109/TPAMI.2010.161
    [16] Fujimoto A, Ogawa T, Yamamoto K, Matsui Y, Aizawa K. Manga109 dataset and creation of metadata. In: Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding. Cancun, Mexico: ACM, 2016. 1−5
    [17] Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861−2873 doi: 10.1109/TIP.2010.2050625
    [18] Agustsson E, Timofte R. NTIRE 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI, USA: IEEE, 2017. 1122−1131
    [19] Timofte R, Rothe R, Van Gool L. Seven ways to improve example-based single image super resolution. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1865−1873
    [20] Wang X T, Yu K, Dong C, Loy C C. Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 606−615
    [21] Blau Y, Mechrez R, Timofte R, Michaeli T, Zelnik-Manor L. The 2018 PIRM challenge on perceptual image super-resolution. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 334−355
    [22] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA: IEEE, 2009. 248−255
    [23] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common objects in context. In: Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014. 740−755
    [24] Everingham M, Eslami S M A, Van Gool L, Williams C K I, Winn J, Zisserman A. The PASCAL visual object classes challenge: A retrospective. International Journal of Computer Vision, 2015, 111(1): 98−136 doi: 10.1007/s11263-014-0733-5
    [25] Liu Z W, Luo P, Wang X G, Tang X O. Deep learning face attributes in the wild. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 3730−3738
    [26] Yu F, Zhang Y D, Song S R, Seff A, Xiao J X. Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv: 1506.03365, 2016.
    [27] Ma K D, Duanmu Z F, Wu Q B, Wang Z, Yong H W, Li H L, et al. Waterloo exploration database: New challenges for image quality assessment models. IEEE Transactions on Image Processing, 2017, 26(2): 1004−1016 doi: 10.1109/TIP.2016.2631888
    [28] Timofte R, Agustsson E, Van Gool L, Yang M H, Zhang L, Lim B, et al. NTIRE 2017 challenge on single image super-resolution: Methods and results. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI, USA: IEEE, 2017. 1110−1121
    [29] Chen C, Xiong Z W, Tian X M, Zha Z J, Wu F. Camera lens super-resolution. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 1652−1660
    [30] Ignatov A, Kobyshev N, Timofte R, Vanhoey K, Van Gool L. DSLR-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 3297−3305
    [31] Wang Z H, Chen J, Hoi S C H. Deep learning for image super-resolution: A survey. arXiv preprint arXiv: 1902.06068, 2020.
    [32] 胡长胜, 詹曙, 吴从中. 基于深度特征学习的图像超分辨率重建. 自动化学报, 2017, 43(5): 814−821

    Hu Chang-Sheng, Zhan Shu, Wu Cong-Zhong. Image super-resolution based on deep learning features. Acta Automatica Sinica, 2017, 43(5): 814−821
    [33] Shi W Z, Caballero J, Huszár F, Totz J, Aitken A P, Bishop R, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1874−1883
    [34] Mao X J, Shen C H, Yang Y B. Image restoration using convolutional auto-encoders with symmetric skip connections. arXiv preprint arXiv: 1606.08921, 2016.
    [35] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 770−778
    [36] Tai Y, Yang J, Liu X M, Xu C Y. MemNet: A persistent memory network for image restoration. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4549−4557
    [37] Kim J, Lee J K, Lee K M. Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1637−1645
    [38] Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. Densely connected convolutional networks. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 2261−2269
    [39] Tong T, Li G, Liu X J, Gao Q Q. Image super-resolution using dense skip connections. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4809−4817
    [40] Zhang Y L, Tian Y P, Kong Y, Zhong B N, Fu Y. Residual dense network for image super-resolution. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 2472−2481
    [41] Yu J H, Fan Y C, Yang J C, Xu N, Wang Z W, Wang X C, et al. Wide activation for efficient and accurate image super-resolution. arXiv preprint arXiv: 1808.08718, 2018.
    [42] Timofte R, Gu S H, Wu J Q, Van Gool L, Zhang L, Yang M H, et al. NTIRE 2018 challenge on single image super-resolution: Methods and results. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, USA: IEEE, 2018.
    [43] Lim B, Son S, Kim H, Nah S, Lee K M. Enhanced deep residual networks for single image super-resolution. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI, USA: IEEE, 2017. 1132−1140
    [44] Sajjadi M S M, Schölkopf B, Hirsch M. EnhanceNet: Single image super-resolution through automated texture synthesis. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4501−4510
    [45] Soh J W, Park G Y, Jo J, Cho N I. Natural and realistic single image super-resolution with explicit natural manifold discrimination. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 8114−8123
    [46] Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 2790−2798
    [47] Lai W S, Huang J B, Ahuja N, Yang M H. Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 5835−5843
    [48] 周登文, 赵丽娟, 段然, 柴晓亮. 基于递归残差网络的图像超分辨率重建. 自动化学报, 2019, 45(6): 1157−1165

    Zhou Deng-Wen, Zhao Li-Juan, Duan Ran, Chai Xiao-Liang. Image super-resolution based on recursive residual networks. Acta Automatica Sinica, 2019, 45(6): 1157−1165
    [49] Han W, Chang S Y, Liu D, Yu M, Witbrock M, Huang T S. Image super-resolution via dual-state recurrent networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 1654−1663
    [50] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2014. 2672−2680
    [51] Wang X T, Yu K, Wu S X, Gu J J, Liu Y H, Dong C, et al. ESRGAN: Enhanced super-resolution generative adversarial networks. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 63−79
    [52] Jolicoeur-Martineau A. The relativistic discriminator: A key element missing from standard GAN. arXiv preprint arXiv: 1807.00734, 2018.
    [53] Haris M, Shakhnarovich G, Ukita N. Deep back-projection networks for super-resolution. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 1664−1673
    [54] Li Z, Yang J L, Liu Z, Yang X M, Jeon G, Wu W. Feedback network for image super-resolution. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 3862−3871
    [55] Zhang Y L, Li K P, Li K, Wang L C, Zhong B N, Fu Y. Image super-resolution using very deep residual channel attention networks. In: Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 286−301
    [56] Dai T, Cai J R, Zhang Y B, Xia S T, Zhang L. Second-order attention network for single image super-resolution. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 11057−11066
    [57] 周登文, 马路遥, 田金月, 孙秀秀. 基于特征融合注意网络的图像超分辨率重建[Online], 自动化学报, 获取自: https://doi.org/10.16383/j.aas.c190428, 2019年11月7日

    Zhou Deng-Wen, Ma Lu-Yao, Tian Jin-Yue, Sun Xiu-Xiu. Feature fusion attention network for image super-resolution [Online], Acta Automatica Sinica, available: https://doi.org/10.16383/j.aas.c190428, November 7, 2019
    [58] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution. In: Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 694−711
    [59] Gatys L A, Ecker A S, Bethge M. A neural algorithm of artistic style. arXiv preprint arXiv: 1508.06576, 2015.
    [60] Wang Y F, Perazzi F, McWilliams B, Sorkine-Hornung A, Sorkine-Hornung O, Schroers C. A fully progressive approach to single-image super-resolution. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE, 2018.
    [61] Yuan Y, Liu S Y, Zhang J W, Zhang Y B, Dong C, Lin L. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE, 2018.
    [62] Mao X D, Li Q, Xie H R, Lau R Y K, Wang Z, Smolley S P. Least squares generative adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2813−2821
    [63] Gatys L A, Ecker A S, Bethge M. Texture synthesis using convolutional neural networks. arXiv preprint arXiv: 1505.07376, 2015.
    [64] Gatys L A, Ecker A S, Bethge M. Image style transfer using convolutional neural networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 2414−2423
    [65] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1−4): 259−268 doi: 10.1016/0167-2789(92)90242-F
    [66] Mechrez R, Talmi I, Shama F, Zelnik-Manor L. Maintaining natural image statistics with the contextual loss. In: Proceedings of the 14th Asian Conference on Computer Vision (ACCV). Perth, Australia: Springer, 2018. 427−443
    [67] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556, 2015.
    [68] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 9446−9454
    [69] Lai W S, Huang J B, Ahuja N, Yang M H. Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599−2613 doi: 10.1109/TPAMI.2018.2865304
    [70] Kim J H, Lee J S. Deep residual network with enhanced upscaling module for super-resolution. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE, 2018.
    [71] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600−612 doi: 10.1109/TIP.2003.819861
    [72] Hu X C, Mu H Y, Zhang X Y, Wang Z L, Tan T N, Sun J. Meta-SR: A magnification-arbitrary network for super-resolution. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 1575−1584
    [73] Bulat A, Yang J, Tzimiropoulos G. To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 187−202
    [74] Zhu J Y, Park T, Isola P, Efros A A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2242−2251
    [75] Zontak M, Irani M. Internal statistics of a single natural image. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA: IEEE, 2011. 977−984
    [76] Mosseri I, Zontak M, Irani M. Combining the power of internal and external denoising. In: Proceedings of the 2013 IEEE International Conference on Computational Photography (ICCP). Cambridge, MA, USA: IEEE, 2013. 1−9
    [77] Shocher A, Cohen N, Irani M. Zero-shot super-resolution using deep internal learning. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 3118−3126
    [78] Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009. 349−356
    [79] Zhang K, Zuo W M, Zhang L. Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 3262−3271
    [80] Gu J J, Lu H N, Zuo W M, Dong C. Blind super-resolution with iterative kernel correction. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 1604−1613
    [81] Zhang K, Zuo W M, Zhang L. Deep plug-and-Play super-resolution for arbitrary blur kernels. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 1671−1681
    [82] Xu X Y, Ma Y R, Sun W X. Towards real scene super-resolution with raw images. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 1723−1731
    [83] Coffin D. Dcraw: Decoding raw digital photos in linux [Online], available: http://www.cybercom.net/dcoffin/dcraw/
    [84] Szegedy C, Ioffe S, Vanhoucke V, Alemi A A. Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI). San Francisco, USA: AAAI Press, 2017. 4278−4284
    [85] He X Y, Mo Z T, Wang P S, Liu Y, Yang M Y, Cheng J. ODE-inspired network design for single image super-resolution. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 1732−1741
    [86] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91−110 doi: 10.1023/B:VISI.0000029664.99615.94
    [87] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381−395 doi: 10.1145/358669.358692
    [88] Zhang X E, Chen Q F, Ng R, Koltun V. Zoom to learn, learn to zoom. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 3757−3765
    [89] Chen Y, Tai Y, Liu X M, Shen C H, Yang J. FSRNet: End-to-end learning face super-resolution with facial priors. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 2492−2501
    [90] Bulat A, Tzimiropoulos G. Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 109−117
    [91] Sheikh H R, Bovik A C, de Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 2005, 14(12): 2117−2128 doi: 10.1109/TIP.2005.859389
    [92] Sheikh H R, Bovik A C. Image information and visual quality. IEEE Transactions on Image Processing, 2006, 15(2): 430−444 doi: 10.1109/TIP.2005.859378
    [93] Damera-Venkata N, Kite T D, Geisler W S, Evans B L, Bovik A C. Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 2000, 9(4): 636−650 doi: 10.1109/83.841940
    [94] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment. In: Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers. Pacific Grove, CA, USA: IEEE, 2003. 1398−1402
    [95] Chandler D M, Hemami S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284−2298 doi: 10.1109/TIP.2007.901820
    [96] Zhang L, Zhang L, Mou X Q, Zhang D. FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8): 2378−2386 doi: 10.1109/TIP.2011.2109730
    [97] Blau Y, Michaeli T. The perception-distortion tradeoff. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 6228−6237
    [98] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 2013, 20(3): 209−212 doi: 10.1109/LSP.2012.2227726
    [99] Ma C, Yang C Y, Yang X K, Yang M H. Learning a no-reference quality metric for single-image super-resolution. Computer Vision and Image Understanding, 2017, 158: 1−16 doi: 10.1016/j.cviu.2016.12.009
    [100] Michaeli T, Irani M. Nonparametric blind super-resolution. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 945−952
  • 加载中
图(23) / 表(7)
计量
  • 文章访问数:  3618
  • HTML全文浏览量:  1572
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 录用日期:  2020-06-11
  • 网络出版日期:  2021-02-04
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回