2.793

2018影响因子

(CJCR)

• 中文核心
• EI
• 中国科技核心
• Scopus
• CSCD
• 英国科学文摘

## 留言板

 引用本文: 周笔锋, 罗毅平, 唐果宁. 分布参数系统源控制系统设计. 自动化学报, 2019, 45(x): 1−6
Zhou Bi-Feng, Luo Yi-Ping, Tang Guo-Ning. Distributed Parameter Systems of Source Control. Acta Automatica Sinica, 2019, 45(x): 1−6 doi: 10.16383/j.aas.c190612
 Citation: Zhou Bi-Feng, Luo Yi-Ping, Tang Guo-Ning. Distributed Parameter Systems of Source Control. Acta Automatica Sinica, 2019, 45(x): 1−6

## Distributed Parameter Systems of Source Control

Funds: Supported by National Natural Science Foundation of China (11972156), Supported by Science Research Projects of Hunan Province Education Department (19C0418)
• 摘要: 针对一类分布参数系统, 提出了源控制方法. 将构成分布参数系统的空间分成若干分, 每份为一个节点, 在所有的节点中, 将能产生量变源头的节点定义为源节点, 跟随源节点变化的节点为跟随节点, 以此构建分布参数系统模型. 对于源节点, 根据经验函数结合反馈偏差调节设计控制器, 对跟随节点考虑源节点控制的逸散作用控制. 利用Lyapunov稳定性理论并结合LMI处理方法, 得出了分布式参数系统稳定源控制器存在的充分条件. 最后结合所给条件, 给出一个数值仿真说明其有效性.
• 图  1  系统源节点$W_{L}(x,t)$状态图

Fig.  1  the system state of source nodes $W_{L}(x,t)$

图  2  系统跟随节点$W_{g}(x,t)$状态图

Fig.  2  the system state of following nodes $W_{g}(x,t)$

•  [1] Ray W H. Advanced Process Control[M]. New York: McGraw-Hill, 1981 [2] Christofides P D. Nonlinear and Robust Control of PDE Systems[M]. Boston: Birkhauser Boston, 2001. [3] 3 Deng H, Li H X, Chen G R. Spectral approximation based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology, 2005, 13: 686−700 [4] 4 Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33: 59−68 [5] Baillieul J. Linearized models for the control of rotating beams[C]//Proceedings of the 27th IEEE Conference on Decision and Control. IEEE, 1988: 1726-1731. [6] 6 Najar F, Choura S, Abdelrahman E M, et al. Dynamic analysis of variable-geometry electrostatic microactuators. Journal of Micromechanics Microengineering, 2006, 16: 2449−2457 [7] 7 Ly C, Doiron B. Correction: Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons. Plos Computational Biology, 2009, 5(4): e1000365 [8] 8 Lan Y H, Wu B, Shi Y X, et al. Iterative learning based consensus control for distributed parameter multi-agent systems with time-delay. Neurocomputing, 2019, 357(10): 77−85 [9] 9 Lan Y H, Xia J J, Xia Y P, et al. Iterative learning consensus control for multi-agent systems with fractional order distributed parameter models. Int. J. Control Autom. Syst, 2019, 17(4): 1−11 [10] 10 Luo Y P, Xia W H, Liu G R, et al. LMI Approach to Exponential Stabilization of Distributed Parameter Control Systems with Delay. Acta Automatica Sinica, 2009, 35: 299−304 [11] 11 Ji H H, Cui B T, LiuX Z. Adaptive control of Markov jump distributed parameter systems via model reference. Fuzzy Sets and Systems, 2019 [12] 12 Wang Z P, Wu H N. Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Information Sciences An International Journal, 2016, 327: 21−39 [13] 13 Zhang X M, Wu H N. H∞ boundary control for a class of nonlinear stochastic parabolic distributed parameter systems. International Journal of Robust and Nonlinear Control, 2019, 29(14): 4665−4680 doi: 10.1002/rnc.4646 [14] 周延九, 崔宝同. 一类半线性抛物型偏微分方程描述的分布参数系统的边界控制[J/OL]. 控制与决策: 1-9. DOI: 10.13195/j.kzyjc.2018.0289.Zhou Y J, CUI B T. Boundary control of the distributed parameter systems described by a class of semi-linear parabolic partial differential equations[J/OL]. Control and Decision, 1-9. DOI: 10.13195/j.kzyjc.2018.0289. [15] 15 Wang J W, Wu H N, Sun C Y. Local exponential stabilization via boundary feedback controllers for a class of unstable semi-linear parabolic distributed parameter processes. Journal of the Franklin Institute, 2017, 354(13): 5221−5244 [16] 栗小丽, 李凯, 刘飞. 双曲线型分布参数系统边界控制下的干扰解耦. 控制与决策, 2016, 31(2): 256−26016 Luan X L, Li K, Liu F. Disturbance decoupling for hyperbolic-type distributed parameter systems with boundary control. Control and Decision, 2016, 31(2): 256−260 [17] 周笔锋, 罗毅平. 时滞分布参数系统中和控制器设计. 自动化学报, 2018, 44(12): 2222−222717 Zhou B F, Luo Y P. Distributed parameter systems of neutralization control with delay. Acta Automatica Sinica, 2018, 44(12): 2222−2227 [18] 催宝同, 楼旭阳. 时滞分布参数系统理论及其应用[M]. 北京: 国防工业出版社, 2009: 8-12.Cui B T, Lou X Y. Theory and application of time-delay distributed parameter system[M]. Beijing: National Defense Industry press, 2009: 8-12 [19] 19 Song Q, Cao J. On pinning synchronization of directed and undirected complex dynamical networks. IEEE Transactions on Circuits Systems Part I Regular Papers, 2010, 57: 672−680

##### 计量
• 文章访问数:  960
• HTML全文浏览量:  498
• 被引次数: 0
##### 出版历程
• 收稿日期:  2019-09-02
• 录用日期:  2019-12-23
• 网络出版日期:  2020-01-02

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈