2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鱼类群体运动的元胞自动机模型中的最小势能原理

陆兴远 袁卫锋

陆兴远, 袁卫锋. 鱼类群体运动的元胞自动机模型中的最小势能原理. 自动化学报, 2021, 47(6): 1422−1427 doi: 10.16383/j.aas.c190568
引用本文: 陆兴远, 袁卫锋. 鱼类群体运动的元胞自动机模型中的最小势能原理. 自动化学报, 2021, 47(6): 1422−1427 doi: 10.16383/j.aas.c190568
Lu Xing-Yuan, Yuan Wei-Feng. Principle of least potential energy in the cellular automaton model for collective motion of fish schools. Acta Automatica Sinica, 2021, 47(6): 1422−1427 doi: 10.16383/j.aas.c190568
Citation: Lu Xing-Yuan, Yuan Wei-Feng. Principle of least potential energy in the cellular automaton model for collective motion of fish schools. Acta Automatica Sinica, 2021, 47(6): 1422−1427 doi: 10.16383/j.aas.c190568

鱼类群体运动的元胞自动机模型中的最小势能原理

doi: 10.16383/j.aas.c190568
基金项目: 西南科技大学基于团队模式的研究生专业课程教学实践基金 (14JGCX07)资助
详细信息
    作者简介:

    陆兴远:西南科技大学制造科学与工程学院硕士研究生. 主要研究方向为鱼类群体运动. E-mail: xyuan117@126.com

    袁卫锋:西南科技大学研究员. 主要研究方向为固体力学计算方法, 纳米复合材料的力−电特性和环境小能量采集. 本文通信作者. E-mail: yuanweifeng@swust.edu.cn

Principle of Least Potential Energy in the Cellular Automaton Model for Collective Motion of Fish Schools

Funds: Supported by Practice on Team Model Teaching of Postgraduate Course, Teaching Reform Fund of Southwest University of Science and Technology (14JGCX07)
More Information
    Author Bio:

    LU Xing-Yuan Master student at the School of Manufacturing Science and Engineering, Southwest University of Science and Technology. His main research interest is collective motion of fish

    YUAN Wei-Feng Professor at the School of Manufacturing Science and Engineering, Southwest University of Science and Technology. His research interest covers the electro-mechanical characteristics of nanocomposite, computational method in solid mechanics, energy harvesting. Corresponding author of this paper

  • 摘要:

    群体运动是自然界中一种常见的生物行为. 在一定的环境条件下, 社会有机体会表现出不同的集体运动形态. 其中, 旋转是鱼群中常见的群体运动. 但是, 虽然研究人员对鱼群的运动进行过一系列的研究, 这种旋转行为的机理尚不清楚. 本研究假定鱼群的运动模式受势能的支配, 相应提出了鱼类个体运动的势函数并将之融合到元胞自动机中以模拟鱼群的运动. 数值模拟表明, 有限空间内鱼群运动时会形成多种形状, 但当此生物系统按照能量最小原则发展时, 其运动形态最终可能演化成为一个漩涡. 数值模拟与针对红斑马鱼的观察之间的比较验证了本模型的合理性. 能量最小原理是自然界的基本定律之一, 而势能函数的建立定义了鱼类个体与环境之间的关系. 因此, 本研究为深入理解群体运动规律提供了新视角, 表明从流体力学上进一步探究鱼群运动的物理机理是一个具有潜力的研究方向.

  • 图  1  鱼的模型

    Fig.  1  Model of fish

    图  3  势能函数的定义

    Fig.  3  Functions defined for potential

    图  2  三维空间中虚拟鱼中的角度关系

    Fig.  2  The angular relationship in the potential energy of the fish in three-dimension

    图  4  真实红斑马鱼群中的旋转群体状态

    Fig.  4  Whirling state in real fish schools of red zebrafish

    图  5  数值模拟过程中旋转的群体状态

    Fig.  5  Whirling state in numerical simulation

    图  6  kd2取值不同时虚拟鱼群在第730时间步的状态

    Fig.  6  The status of fish schools at 730th time step subject to different kd2 values

  • [1] Suzuki T N, Kutsukake N. Foraging intention affects whether willow tits call to attract members of mixed-species flocks. Royal Society Open Science, 2017, 4(6): 170222 doi: 10.1098/rsos.170222
    [2] Fischhoff I R, Sundaresan S R, Cordingley J, Larkin H M, Sellier M J, Rubenstein D I. Social relationships and reproductive state influence leadership roles in movements of plains zebra, equus burchellii. Animal Behaviour, 2007, 73(5): 825−831 doi: 10.1016/j.anbehav.2006.10.012
    [3] 柳玲飞, 周应祺, 钱卫国, 赵媛, 王明. 红鼻鱼群体结构的数学建模与仿真可视化. 水产学报, 2010, 34(12): 1869−1876

    Liu Ling-Fei, Zhou Ying-Qi, Qian Wei-Guo, Zhao Yuan, Wang Ming. Modeling and simulation on schooling structure of hemigrammus bleheri. Journal of Fisheries of China, 2010, 34(12): 1869−1876
    [4] 班晓娟, 宁淑荣, 涂序彦. 人工鱼群高级自组织行为研究. 自动化学报, 2008, 34(10): 1327−1332

    Ban Xiao-Juan, Ning Shu-Rong, Tu Xu-Yan. Research on advanced self-organization behavior for artificial fish school. Acta Automatica Sinica, 2008, 34(10): 1327−1332
    [5] Koch A L, White D. The social lifestyle of myxobacteria. Bioessays, 2015, 20(12): 1030−1038
    [6] Reynolds C W. Flocks, herds, and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25−34 doi: 10.1145/37402.37406
    [7] Zienkiewicz A K, Ladu F, Barton D A W, Porfiri M, Bernardo M D. Data-driven modelling of social forces and collective behaviour in zebrafish. Journal of Theoretical Biology, 2018, 443: 39−51 doi: 10.1016/j.jtbi.2018.01.011
    [8] 杨永娟. 用java实现鱼群游动模拟系统. 安徽理工大学学报(自科版), 2006, 26(4): 67−71

    Yang Yong-Juan. Realization of fish-swimming simulation system with java. Journal of Anhui University of science and Technology (Natural Science), 2006, 26(4): 67−71
    [9] Dai L, He G, Zhang X, Zhang X. Stable formations of self-propelled fish-like swimmers induced by hydrodynamic interactions. Journal of the Royal Society Interface, 2018, 15(147): 13
    [10] Nagy M, Ákos Z, Biro D, Vicsek T. Hierarchical group dynamics in pigeon flocks. Nature, 2010, 464(7290): 890−893 doi: 10.1038/nature08891
    [11] Gueron S, Levin S A, Rubenstein D I. The dynamics of herds: From individuals to aggregations. Journal of Theoretical Biology, 1996, 182(1): 85−98 doi: 10.1006/jtbi.1996.0144
    [12] Couzin I D, Krause J. Self-organization and collective behavior in vertebrates. Advances in the Study of Behavior, 2003, 32: 1−75 doi: 10.1016/S0065-3454(03)01001-5
    [13] Li S, Batra R, Brown D, Chang H D, Ranganathan N, Hoberman C, Rus D, Lipson H. Particle robotics based on statistical mechanics of loosely coupled components. Nature, 2019, 567(7748): 361−365
    [14] 雷斌. 群体机器人系统合作控制问题研究 [硕士学位论文]. 武汉理工大学, 中国, 2009.

    Lei Bin. Research on cooperative control problem of swarm robots system [Master thesis]. Wuhan University of Technology, China, 2009.
    [15] Neumann J V, Burks A W. Theory of Self-Reproduction Automata. University of Illinois press, Urbana, 1966.
    [16] Bertin E, Droz M, Grégoire G. Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. Journal of Physics A: Mathematical and Theoretical, 2009, 42(44): 445001 doi: 10.1088/1751-8113/42/44/445001
    [17] Yuan W F, Tan K H. A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment. Physica A Statistical Mechanics & Its Applications, 2011, 390(23-24): 4210−4218
    [18] Pattanayak S, Mishra S. Collection of polar self-propelled particles with a modified alignment interaction. Journal of Physics Communications, 2018, 2(4): 045007 doi: 10.1088/2399-6528/aab8cc
    [19] Bertrand L, Colby T, Christa W, Tammy T, Shea Q, David S. Motion cues tune social influence in shoaling fish. Scientific Reports, 2018, 8(1): 9785 doi: 10.1038/s41598-018-27807-1
    [20] Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 2008, 105(4): 1232−1237 doi: 10.1073/pnas.0711437105
    [21] Maria D M D, Miranda M, Alvarez S J, Gurarie E, Fagan W F, Penteriani V, Virgilio A D, Morales J M. The importance of individual variation in the dynamics of animal collective movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373(1746): 20170008 doi: 10.1098/rstb.2017.0008
  • 加载中
图(6)
计量
  • 文章访问数:  2298
  • HTML全文浏览量:  1218
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-06
  • 网络出版日期:  2019-12-19
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回