2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆安全跟驰模式预测的形式化建模方法

刘秉政 高松 曹凯 王鹏伟 徐艺

刘秉政, 高松, 曹凯, 王鹏伟, 徐艺. 车辆安全跟驰模式预测的形式化建模方法. 自动化学报, 2019, 45(x): 1−12 doi: 10.16383/j.aas.c190563
引用本文: 刘秉政, 高松, 曹凯, 王鹏伟, 徐艺. 车辆安全跟驰模式预测的形式化建模方法. 自动化学报, 2019, 45(x): 1−12 doi: 10.16383/j.aas.c190563
Liu Bing-Zheng, Gao Song, Cao Kai, Wang Peng-Wei, Xu Yi. Formal modeling method for prediction of safe vehicle following mode. Acta Automatica Sinica, 2019, 45(x): 1−12 doi: 10.16383/j.aas.c190563
Citation: Liu Bing-Zheng, Gao Song, Cao Kai, Wang Peng-Wei, Xu Yi. Formal modeling method for prediction of safe vehicle following mode. Acta Automatica Sinica, 2019, 45(x): 1−12 doi: 10.16383/j.aas.c190563

车辆安全跟驰模式预测的形式化建模方法

doi: 10.16383/j.aas.c190563
基金项目: 国家自然科学基金(61573009), 山东省自然科学基金(ZR2018LF009, ZR2018PEE016)资助
详细信息
    作者简介:

    刘秉政:山东理工大学交通与车辆工程学院, 博士后. 2017年获得大连理工大学博士学位. 主要研究方向为智能车辆行为预测与决策. E-mail: lbzheng528@126.com

    高松:山东理工大学交通与车辆工程学院院长, 教授. 主要研究方向为电动车辆能源动力系统匹配理论与控制技术、智能车辆与智能交通系统. 本文通信作者. E-mail: gs6510@163.com

    曹凯:山东理工大学交通与车辆工程学院教授. 2005年获得日本茨城大学博士学位. 主要研究方向为车路协同控制与建模, 车辆自主行为决策建模和基于数据链的交通空-地协同信息融合. E-mail: caokailiu@sdut.edu.cn

    王鹏伟:山东理工大学交通与车辆工程学院博士研究生. 2015年获江西农业大学机械设计与理论专业硕士学位. 主要研究方向为智能车辆动态决策与规划、智能车辆动力学与控制. E-mail: wpwk16@163.com

    徐艺:山东理工大学交通与车辆工程学院讲师. 2016年获吉林大学载运工具运用工程专业博士学位. 研究方向包括智能车环境感知、动态决策与规划. E-mail: xuyisdut@163.com

Formal Modeling Method for Prediction of Safe Vehicle Following Mode

Funds: Supported by National Natural Science Foundation of China (61573009), Natural Science Foundation of Shandong province, China (ZR2018LF009, ZR2018PEE016)
  • 摘要: 由于传统车辆跟驰建模预测方法无法遍历车辆所有可能的系统输入与运行状态的不确定性, 因而不足以从理论上保证对周边车辆安全跟驰行为预测的完整性与可信性. 为此提出车辆安全跟驰模式预测的形式化建模方法. 该方法利用随机可达集的遍历表现特征实现对周边车辆行为预测的不确定性表述, 并通过马尔科夫链逼近可达集的方式表达系统行为状态变化的随机性, 从而完成对周边车辆跟驰行为状态变化的精确概率预估. 为了表达跟驰情形中车辆之间的行为关联影响以及提高在线计算效率, 离线构建了关联车辆在状态及控制输入之间的安全关联矩阵, 描述周边车辆的安全跟驰控制输入选择规律, 并综合相关车辆的当前状态信息, 达到对周边车辆安全跟驰行为的在线分析与预估. 数值验证不仅表明提出的建模方法完备地表述了周边车辆所有的安全跟驰行为及过程, 显著提高了预测的精确度, 也论证了该方法对车辆跟驰控制策略建模分析与安全验证的有效性.
  • 图  1  建模框架

    Fig.  1  Method framework

    图  2  仿真流程

    Fig.  2  Simulation flowchart

    图  3  不同时间区段的车辆踪迹分布

    Fig.  3  Trace distribution of vehicles for different time intervals

    图  4  不同时间区段的跟驰车辆控制输入直方图

    Fig.  4  Control input histograms of following vehicles for different time intervals

    图  5  不同时间区段的跟驰车辆速度直方图

    Fig.  5  Velocity histograms of following vehicles for different time intervals

    图  6  不同时间区段的车辆踪迹分布

    Fig.  6  Trace distribution of vehicles for different time intervals

    图  7  跟驰情形中的碰撞概率 (a) $\varepsilon = 0.0001$; (b) $\varepsilon = 0$

    Fig.  7  Collision probability in vehicle following (a) $\varepsilon = 0.0001$; (b) $\varepsilon = 0$

    图  8  不同时间区段的车辆踪迹分布

    Fig.  8  Trace distribution of vehicles for different time intervals

    图  9  跟驰情形中的碰撞概率

    Fig.  9  Collision probability in vehicle following

    表  1  离线运算中主要参数

    Table  1  Main parameters used in offline operation

    参数赋值
    $S / \mathrm{m}$ $[0,200]$
    $V / \mathrm{(m/s)}$$[0,20]$
    $U$$[-1,1]$
    $n$$40$
    $m$$10$
    $g$$6$
    $\varpi$$10$
    $\varepsilon $$0.000 1$
    下载: 导出CSV

    表  2  驾驶行为及车辆特性

    Table  2  Driving behavior and vehicle characteristics

    参数赋值
    $\gamma$$0.2$
    $\pmb \mu$$[0.01\;0.04\;0.1\;0.4\;0.4\;0.05]$
    $\pmb q_{(i,j)}(0)$$[0\;0\;0\;1\;0\;0]$
    $\tau / \mathrm{s}$$0.5$
    $\sigma$$[1\;4\;8]$
    $a^\mathrm{max} / \mathrm{(m/s^2)}$$7$
    $v^* \mathrm{(m/s)}$$7.3$
    下载: 导出CSV

    表  3  初始属性-1: 均匀分布集合

    Table  3  Initial state-1: Set with uniform distribution

    参数赋值
    $S^\mathrm{A}(0) / \mathrm{m}$$[100,106]$
    $V^\mathrm{A}(0) / \mathrm{(m/s)}$$[2,4]$
    $S^\mathrm{B}(0) / \mathrm{m}$$[50,62]$
    $V^\mathrm{B}(0) / \mathrm{(m/s)}$$[8,10]$
    $S^\mathrm{C}(0) / \mathrm{m}$$[5,17]$
    $V^\mathrm{C}(0) / \mathrm{(m/s)}$$[12,14]$
    下载: 导出CSV

    表  4  初始属性-2: 均匀分布集合

    Table  4  Initial state-2: Set with uniform distribution

    参数赋值
    $S^\mathrm{A}(0) / \mathrm{m}$$[62, 74]$
    $V^\mathrm{A}(0) / \mathrm{(m/s)}$$[8, 10]]$
    $S^\mathrm{B}(0) / \mathrm{m}$$[25, 37]$
    $V^\mathrm{B}(0) / \mathrm{(m/s)}$$[6, 8]$
    $S^\mathrm{C}(0) / \mathrm{m}$$[5, 17]$
    $V^\mathrm{C}(0) / \mathrm{(m/s)}$$[2, 4]$
    下载: 导出CSV
  • [1] 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望. 中国公路学报, 2012, 25(1): 115−127 doi: 10.3969/j.issn.1001-7372.2012.01.018

    1 Wang Dian-Hai, Jin Sheng. Review and outlook of modeling of car following behavior. China Journal of Highway and Transport, 2012, 25(1): 115−127 doi: 10.3969/j.issn.1001-7372.2012.01.018
    [2] 2 Gazis D C, Herman R, Rothery R W. Nonlinear followthe-leader models of traffic flow. Operations Research, 1961, 9(4): 545−567 doi: 10.1287/opre.9.4.545
    [3] 3 Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y. Dynamical model of traffic congestion and numericalsimulation. Physical Review E, 1995, 51(2): 1035−1042 doi: 10.1103/PhysRevE.51.1035
    [4] 4 Helbing D, Tilch B. Generalized force model of traffic dynamics. Physical Review E, 1998, 58(1): 133−138 doi: 10.1103/PhysRevE.58.133
    [5] 5 Jiang R, Wu Q S, Zhu Z J. Full velocity difference model for a car-following theory. Physical Review E, 2001, 64(1): 7101−7104
    [6] 6 Wang Y, Zhang J, Lu G. Influence of driving behaviors on the stability in car Following. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 1081−1098 doi: 10.1109/TITS.2018.2837740
    [7] 7 Xie D F, Zhao X M, He Z. Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060−2071 doi: 10.1109/TITS.2018.2857465
    [8] 李永福, 邬昌强, 朱浩, 唐晓铭. 考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制 [Online], 自动化学报, https://doi.org/10.16383/j.aas.c190046, 2019-12-04

    LI Yong-Fu, WU Chang-Qiang, ZHU Hao, Tang Xiao-Ming. Trajectory Tracking Control for Connected Vehicle Platoon Considering Car-following Interactions and Time Delays[Online], Acta Automatica Sinica, available: https://doi.org/10.16383/j.aas.c190046, December 4, 2019(in Chinese)
    [9] 李润梅, 张立威, 王剑. 基于时变间距和相对角度的无人车跟随控制方法研究. 自动化学报, 2018, 44(11): 2031−2040

    9 Li Run-Mei, Zhang Li-Wei, Wang Jian. A control method of unmanned car following under time-varying relative distance and angle. Acta Automatica Sinica, 2018, 44(11): 2031−2040
    [10] 10 Li X H, Yang T, Liu J, Qin X Q, Yu S W. Effects of vehicle gap changes on fuel economy and emission performance of the traffic flow in the ACC strategy. PLOS ONE, 2018, 13(7): e0200110 doi: 10.1371/journal.pone.0200110
    [11] 11 Kim T, Jeong H Y. A novel algorithm for crash detection under general road scenes using crash probabilities and an interactive multiple model particle filter. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2480−2490 doi: 10.1109/TITS.2014.2320447
    [12] 12 Asarin E, Dang T, Maler O. d/dt: A tool for reachability analysis of continuous and hybrid Systems. IFAC Proceedings Volumes, 2001, 34(6): 741−746 doi: 10.1016/S1474-6670(17)35267-9
    [13] Bemporad A, Torrisi F D, Morari M. Optimization-based verification and stability characterization of Piecewise Affine and Hybrid Systems. In: Proceedings of Hybrid Systems: Computation and Control. Berlin, Germany: SpringerVerlag, 2000.45−58
    [14] Botchkarev O, Tripakis S. Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Proceedings of Hybrid Systems: Computation and Control. Berlin, Germany: Springer-Verlag, 2000.73−78
    [15] Stursberg O, Krogh B H. Efficient representation and computation of reachable sets for hybrid systems. In: Proceedings of Hybrid Systems: Computation and Control. Berlin, Germany: Springer-Verlag, 2003.482−497
    [16] Girard A. Reachability of uncertain linear systems using zonotopes. In: Proceedings of Hybrid Systems: Computation and Control. Berlin, Germany: Springer-Verlag, 2005.291−305
    [17] 17 Althoff M, Stursberg O, Buss M. Model-based probabilistic collision detection in autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(2): 299−310 doi: 10.1109/TITS.2009.2018966
    [18] Koschi M, Althoff M. SPOT: A tool for set-based prediction of traffic participants. In: Proceedings of the 2017 IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, June 11-14, 2017.1686−1693
    [19] Althoff M, Lutz S. Automatic generation of safety-critical test scenarios for collision avoidance of road vehicles. In: Proceedings of the 29th IEEE Intelligent Vehicles Symposium, Changshu, Suzhou, China, June 26-30, 2018.1326−1333
    [20] Sontges S, Koschi M, Althoff M. Worst-case Analysis of the Time-To-React Using Reachable Sets. In: Proceedings of the 29th IEEE Intelligent Vehicles Symposium, Changshu, Suzhou, China, June 26-30, 2018.1891−1897
    [21] 21 Eidehall A, Petersson L. Threat assessment for general road scenes using monte carlo sampling. IEEE Transactions on Intelligent Transportation Systems, 2006, 9(1): 137−147
  • 加载中
计量
  • 文章访问数:  1621
  • HTML全文浏览量:  1924
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 录用日期:  2019-12-02
  • 网络出版日期:  2019-12-26

目录

    /

    返回文章
    返回