2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于钩缓约束的重载列车驾驶过程优化

付雅婷 原俊荣 李中奇 杨辉

付雅婷, 原俊荣, 李中奇, 杨辉. 基于钩缓约束的重载列车驾驶过程优化. 自动化学报, 2019, 45(12): 2355−2365 doi: 10.16383/j.aas.c190223
引用本文: 付雅婷, 原俊荣, 李中奇, 杨辉. 基于钩缓约束的重载列车驾驶过程优化. 自动化学报, 2019, 45(12): 2355−2365 doi: 10.16383/j.aas.c190223
Fu Ya-Ting, Yuan Jun-Rong, Li Zhong-Qi, Yang Hui. Optimization of heavy haul train operation process based on coupler constraints. Acta Automatica Sinica, 2019, 45(12): 2355−2365 doi: 10.16383/j.aas.c190223
Citation: Fu Ya-Ting, Yuan Jun-Rong, Li Zhong-Qi, Yang Hui. Optimization of heavy haul train operation process based on coupler constraints. Acta Automatica Sinica, 2019, 45(12): 2355−2365 doi: 10.16383/j.aas.c190223

基于钩缓约束的重载列车驾驶过程优化

doi: 10.16383/j.aas.c190223
基金项目: 国家自然科学基金(61673172, 51565012, 61733005, 61803155, 61663013)资助
详细信息
    作者简介:

    付雅婷:博士, 华东交通大学电气与自动化工程学院讲师. 主要研究方向为轨道交通运行优化控制. E-mail: fuyating0103@163.com

    原俊荣:华东交通大学电气与自动化工程学院硕士研究生. 主要研究方向为重载列车运行优化控制. E-mail: gfnjl@163.com

    李中奇:博士, 华东交通大学电气与自动化工程学院教授. 主要研究方向为列车运行过程建模与控制. E-mail: lzq0828@163.com

    杨辉:博士, 华东交通大学电气与自动化工程学院教授. 主要研究方向为复杂系统建模, 控制与运行优化. 本文通信作者. E-mail: yhshuo@263.net

Optimization of Heavy Haul Train Operation Process Based on Coupler Constraints

Funds: Supported by National Natural Science Foundation of China (61673172, 51565012, 61733005, 61803155, 61663013)
  • 摘要: 重载列车是一种由上百甚至几百节车厢组成的动力集中式大载重系统, 其牵引力/制动力需通过车钩相继传递给车厢, 存在明显的非线性和大滞后性. 现有的人工驾驶模式, 司机难以考虑车厢之间的钩缓约束, 易引起车钩断裂和脱轨; 且运行性能与司机的操纵经验密切相关, 存在耗电大, 无法按照列车运行图正点运行等问题. 本文针对此关键问题, 以实现重载列车安全、正点、节能运行为目标, 开展其驾驶过程运行优化研究. 分析列车钩缓系统受力原理, 基于其特性曲线, 采用翟方法构造重载列车钩缓模型及整车纵向动力学模型; 据此, 考虑钩缓约束运用多目标自适应遗传算法, 结合实际运行线路(限速、坡道、曲线率等)约束条件设定列车理想的运行速度目标曲线; 最后, 采用改进广义预测控制器设计重载列车驾驶过程优化控制方法, 跟踪理想速度目标曲线安全、正点、低能耗运行. 基于大秦线上HXD1型重载列车实际数据的仿真结果表明本文所设计的理想目标速度曲线优化方法可以较好地改善列车运行中的安全, 正点和节能等关键性指标, 运行优化控制能保证列车精确跟踪理想速度目标曲线, 实现其驾驶过程优化运行.
    1)  1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013    2. Key Laboratory of Advanced Control and Optimization of Jiangxi Province, Nanchang 330013
    2)  收稿日期 2019-03-22    录用日期 2019-06-02 Manuscript received March 22, 2019; accepted June 2, 2019 国家自然科学基金 (61673172, 51565012, 61733005, 61803155, 61663013) 资助 Supported by National Natural Science Foundation of China (61673172, 51565012, 61733005, 61803155, 61663013) 本文责任编委 董海荣 Recommended by Associate Editor DONG Hai-Rong 1. 华东交通大学电气与自动化工程学院 南昌 330013    2. 江西省先进控制与优化重点实验室 南昌 330013
  • 图  1  重载列车纵向动力学模型

    Fig.  1  Longitudinal dynamic model of heavy haul train

    图  2  弹性胶泥缓冲器特性曲线

    Fig.  2  Elastic clay buffer characteristic curves

    图  3  重载列车多质点模型运行计算流程图

    Fig.  3  Flow charts of multi-particle model operation calculation for heavy haul train

    图  4  多目标自适应遗传算法计算流程图

    Fig.  4  Computational flow chart of multi-objective adaptive genetic algorithms

    图  5  湖东二场 — 阳原区段部分线路数据

    Fig.  5  Partial line data of Hudongerchang — Yangyuan section

    图  6  文献[24]中9个机构仿真的最大车钩力

    Fig.  6  Maximum coupler force of nine mechanisms simulated in [24]

    图  8  文献[24]中第10号车钩车钩力变化趋势

    Fig.  8  Tendency of coupler force change of coupler No.10 in [24]

    图  9  本文仿真的第10号车钩车钩力变化趋势

    Fig.  9  Tendency of coupler force change of coupler No. 10 simulated in this paper

    图  7  本文仿真的最大车钩力

    Fig.  7  Maximum coupler force simulated in this paper

    图  10  重载列车理想运行目标曲线

    Fig.  10  Ideal train operation curve of heavy haul train

    图  11  本文方法、文献[14]方法优化后运行与实际驾驶最大车钩力

    Fig.  11  Maximum coupler forces of optimized operation in this paper, [14] and actual operation

    图  12  多目标优化策略遗传算法适应度

    Fig.  12  Multiple target optimal policy genetic algorithm fitness

    图  13  改进广义预测控制速度跟踪曲线

    Fig.  13  Speed tracking of IGPC

    图  14  改进广义预测控制牵引/制动力曲线

    Fig.  14  Control force of IGPC

    表  1  本文方法、文献[14]方法优化后多目标数据与实际驾驶数据对比

    Table  1  Data comparison among multiple target optimal policy in this paper, [14] and actual operation

    时间 (s)能耗 (kW)安全系数最大拉钩 (kN)最大压钩 (kN)
    本文3 383.13 505.3−821.91 160.7
    司机驾驶3 5104 200−1 347.71 787.6
    文献 [14]3 3793 929−1 170.32 009
    下载: 导出CSV
  • [1] Coleman A. Railroads of North Carolina. Arcadia Publishing, 2008.
    [2] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战. 西南交通大学学报, 2016, 51(2): 209−226 doi: 10.3969/j.issn.0258-2724.2016.02.001

    2 Zhai Wan-Ming, Zhao Cun-Fa. Frontiers and challenges of sciences and technologies in modern railway engineering. Journal of Southwest Jiaotong University, 2016, 51(2): 209−226 doi: 10.3969/j.issn.0258-2724.2016.02.001
    [3] 3 Lu Q W, He B B, Wu M Z, Zhang Z C, Luo J T, Zhang Y K. Establishment and analysis of energy consumption model of heavy-haul train on large long slope. Energies, 2018, 11(4): 965 doi: 10.3390/en11040965
    [4] 4 Wei W, Zhang J, Zhao X B, Zhang Y. Heavy haul train impulse and reduction in train force method. Australian Journal of Mechanical Engineering, 2018, 16(2): 118−125 doi: 10.1080/14484846.2018.1457259
    [5] 5 Cherkashin U M, Zakharov S M, Semechkin A E. An overview of rolling stock and track monitoring systems and guidelines to provide safety of heavy and long train operation in the Russian railways. Proceedings of the Institution of Mechanical Engineers, Part F Journal of Rail and Rapid Transit, 2009, 223(2): 199−208
    [6] 6 Dong H R, Ning B, Cai B G, Hou Z S. Automatic train control system development and simulation for high-speed railways. IEEE Circuits and System, 2010, 10(2): 6−18
    [7] 7 Erofeyev E. Calculation of optimum train control using dynamic programming method. Moscow Railway Engineering Institute: Moscow, Russia, 1967, 811: 16−30
    [8] 8 Howlett P. A new look at the rate of change of energy consumption with respect to journey time on an optimal train journey. Transportation Research Part B: Methodological, 2016, 94(12): 387−408
    [9] 9 Howlett P G, Pudney P J, Xuan V. Local energy minimization in optimal train control. Automatica, 2009, 45(11): 2692−2698 doi: 10.1016/j.automatica.2009.07.028
    [10] 10 Wang P L, Goverde R M P. Multiple-phase train trajectory optimization with signalling and operational constraints. Transportation Research Part C: Emerging Technologies, 2016, 69(8): 255−275
    [11] 11 Wang P L, Goverde R M P. Multi-train trajectory optimization for energy-efficient timetabling. European Journal of Operational Research, 2018, 272(2): 621−635
    [12] 12 Scown B, Roach D, Wilson P. Freight train driving strategies developed for undulating track through train dynamics research. CORE 2000: Railway Technology for 21st Century, 2000: 236−247
    [13] 13 Zhang L, Zhuan X. Optimal operation of heavy-haul trains equipped with electronically controlled pneumatic brake systems using model predictive control methodology. IEEE Transactions on Control Systems Technology, 2013, 22(1): 13−22
    [14] 陈荣武, 刘莉, 郭进. 基于遗传算法的列车运行能耗优化算法. 交通运输工程学报, 2012, 12(1): 112−118

    14 Chen Rong-Wu, Liu Li, Guo Jin. Optimization algorithm of train operation energy consumption based on genetic algorithm. Journal of Transportation Engineering, 2012, 12(1): 112−118
    [15] 15 Zou R, Luo S, Ma W. Simulation analysis on the coupler behaviour and its influence on the braking safety of locomotive. Vehicle System Dynamics, 2018, 56(11): 1−21
    [16] 16 Wu G, Huang W, Yuan Y. Improvements for the stability of heavy-haul couplers with arc surface contact. Vehicle System Dynamics, 2018, 56(3): 1−15
    [17] 翟婉明. 列车 − 轨道耦合动力学. 北京: 科学出版社, 2007.

    Zhai Wan-Ming. Vehicle-Orbit Coupling Dynamics, Beijing: Science Press, 2007.
    [18] 金弟, 刘杰, 杨博, 何东晓, 刘大有. 局部搜索与遗传算法结合的大规模复杂网络社区探测. 自动化学报, 2011, 37(7): 873−882

    18 Jin Di, Liu Jie, Yang Bo, He Dong-Xiao, Liu Da-You. Genetic algorithm with local search for community detection in large-scale complex networks. Acta Automatica Sinica, 2011, 37(7): 873−882
    [19] 苏锑, 杨明, 王春香, 唐卫, 王冰. 一种基于分类回归树的无人车汇流决策方法. 自动化学报, 2018, 44(1): 35−43

    19 Su Ti, Yang Ming, Wang Chun-Xiang, Tang Wei, Wang Bing. Classification and regression tree based traffic merging for method self-driving vehicles. Acta Automatica Sinica, 2018, 44(1): 35−43
    [20] 张日东, 王树青, 李平. 基于支持向量机的非线性系统预测控制. 自动化学报, 2007, 33(10): 1066−1073

    20 Zhang Ri-Dong, Wang Shu-Qing, Li Ping. Support vector machine based predictive control for nonlinear systems. Acta Automatica Sinica, 2007, 33(10): 1066−1073
    [21] 徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799−806

    21 Xu Yang, Lu Li-Ping, Chu Duan-Feng, Huang Zi-Chao. Unified modeling of trajectory planning and tracking for unmanned vehicle. Acta Automatica Sinica, 2019, 45(4): 799−806
    [22] 唐晓铭, 邓梨, 虞继敏, 屈洪春. 基于区间二型 T-S 模糊模型的网络控制系统的输出反馈预测控制. 自动化学报, 2019, 45(3): 604−616

    22 Tang Xiao-Ming, Deng Li, Yu Ji-Min, Qu Hong-Chun. Output feedback model predictive control for interval type-2 T-S fuzzy networked control systems. Acta Automatica Sinica, 2019, 45(3): 604−616
    [23] 23 Spiryagin M, Wu Q, Cole C. International benchmarking of longitudinal train dynamics simulators: benchmarking questions. Vehicle System Dynamics, 2017, 55(4): 450−463 doi: 10.1080/00423114.2016.1270457
    [24] 24 Wu Q, Spiryagin M, Cole C, Chang C Y, Guo G, Sakalo A, et al. International benchmarking of longitudinal train dynamics simulators: results. Vehicle System Dynamics, 2018, 56(3): 343−365 doi: 10.1080/00423114.2017.1377840
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  2139
  • HTML全文浏览量:  403
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 录用日期:  2019-06-02
  • 网络出版日期:  2019-12-06
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回