2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁浮交通轨排耦合自激振动分析及自适应控制方法

周丹峰 李杰 余佩倡 陈强 李亚楗

周丹峰, 李杰, 余佩倡, 陈强, 李亚楗. 磁浮交通轨排耦合自激振动分析及自适应控制方法. 自动化学报, 2019, 45(12): 2328−2343 doi: 10.16383/j.aas.c190179
引用本文: 周丹峰, 李杰, 余佩倡, 陈强, 李亚楗. 磁浮交通轨排耦合自激振动分析及自适应控制方法. 自动化学报, 2019, 45(12): 2328−2343 doi: 10.16383/j.aas.c190179
Zhou Dan-Feng, Li Jie, Yu Pei-Chang, Chen Qiang, Li Ya-Jian. Analysis and adaptive control of the track induced self-excited vibration for the maglev transport. Acta Automatica Sinica, 2019, 45(12): 2328−2343 doi: 10.16383/j.aas.c190179
Citation: Zhou Dan-Feng, Li Jie, Yu Pei-Chang, Chen Qiang, Li Ya-Jian. Analysis and adaptive control of the track induced self-excited vibration for the maglev transport. Acta Automatica Sinica, 2019, 45(12): 2328−2343 doi: 10.16383/j.aas.c190179

磁浮交通轨排耦合自激振动分析及自适应控制方法

doi: 10.16383/j.aas.c190179
基金项目: 国家重点研究发展计划(2016YFB1200601), 国家自然科学基金(11302252), 信息功能材料国家重点实验室开放课题(SKL-2017-07)资助
详细信息
    作者简介:

    周丹峰:国防科技大学智能科学学院副研究员. 2011年获得国防科技大学控制科学与工程博士学位. 主要研究方向为磁悬浮控制与振动控制技术. 本文通信作者. E-mail: zhoudanfeng@nudt.edu.cn

    李杰:国防科技大学智能科学学院教授. 1999年获得国防科技大学博士学位. 主要研究方向为磁悬浮控制, 机器人控制. E-mail: jieli@nudt.edu.cn

    余佩倡:国防科技大学讲师. 2016年获得国防科技大学博士学位. 主要研究方向为磁悬浮控制. E-mail: lofter@163.com

    陈强:国防科技大学讲师. 2018年获得国防科技大学博士学位. 主要研究方向为磁悬浮控制和电磁发射技术. E-mail: nucqdt3@163.com

    李亚楗:国防科技大学博士研究生. 2015年获得国防科技大学硕士学位. 主要研究方向为磁悬浮控制. E-mail: liyajiancs@163.com

Analysis and Adaptive Control of the Track Induced Self-excited Vibration for the Maglev Transport

Funds: Supported by National Key Research and Development Program of China (2016YFB1200601), National Natural Science Foundation of China (11302252), and Opening Foundation of the State Key Laboratory of Functional Materials for Informatics (SKL-2017-07)
  • 摘要: 本文针对中低速磁浮交通的轨排自激振动问题, 首先建立了包括轨枕、导轨在内的多跨磁浮轨排动力学模型, 通过理论方法分析轨排的模态振型、频率等关键参数. 其次, 建立了包含一体化电磁铁的悬浮模块的动力学模型, 并与轨排模型结合建立轨排 − 悬浮模块耦合模型, 分析了耦合系统失稳发生自激振动的原因. 提出了一种带辨识器的自适应振动控制方法, 能够实时辨识轨排的主要动力学参数, 并由此产生自适应振动控制律.相比现有的轨排振动控制方法, 该方法具有更好的稳定性和环境适应性.
  • 图  1  中低速磁浮交通的轨排结构

    Fig.  1  Track structure of the medium-low speedmaglev transport

    图  2  磁浮轨排的等效模型

    Fig.  2  Equivalent model of the maglev track

    图  3  模态分析法计算得到的轨排前三阶模态振型

    Fig.  3  The first three order mode shapes of the track obtained by mode superposition method

    图  4  用于有限元计算的轨排三维模型

    Fig.  4  Three dimensional model for finiteelement analysis

    图  5  用有限元方法得到的轨排前三阶模态振型

    Fig.  5  The first three order mode shapes of the track obtained by finite analysis method

    图  6  悬浮模块和轨排相对位置示意图

    Fig.  6  Demonstration of the relative position of thelevitation module and the track

    图  7  简化的悬浮模块和轨排示意图

    Fig.  7  Simplified schematic of the levitation module andthe track

    图  8  考虑轨排一阶模态时耦合系统的根随x0变化的轨迹

    Fig.  8  Root locus of the coupled system as x0 changes when the track first order mode is taken into account

    图  9  考虑一阶模态时$r_7$$r_8$的实部随$x_0$变化的规律

    Fig.  9  Real parts of $r_{7 }$ and $r_{8 }$ as $x_{0}$ changes

    图  10  二阶和三阶模态时$r_{7}$$r_{8}$的实部随$x_{0}$变化的规律

    Fig.  10  Real parts of $r_{7 }$ and $r_{8 }$ as $x_{0}$ changes when the second and third order modes are taken into account

    图  11  悬浮模块左右两点悬浮间隙的仿真结果

    Fig.  11  Levitation gaps of the levitation module in the simulation

    图  12  模块悬浮系统和轨排耦合模型的控制结构框图

    Fig.  12  Block diagram of the control system with levitation module and track coupled system

    图  13  $\hat {{ \theta} }_1 $$\hat {{ \theta} }_2$ 后2项参数的辨识结果

    Fig.  13  Identification of the last two terms in $\hat {{ \theta} }_1 $ and $\hat {{ \theta} }_2$

    图  14  辨识得到的轨排的模态频率响应特性

    Fig.  14  Frequency response of the identifiedtrack model

    图  15  闭环系统的仿真结果

    Fig.  15  Simulation result of the closed-loop system

    图  16  在阶跃和噪声干扰下闭环系统的仿真结果

    Fig.  16  Simulation result of the closed-loop system in the presence of step and noise interferences

    图  17  在4.5$\sim $6 s之间的间隙1信号功率谱密度

    Fig.  17  Power spectrum density of measured gap 1 signal during 4.5 s to 6 s

    图  18  文献[13]的自适应振动控制方法在相同条件下的仿真结果

    Fig.  18  Simulation result of the adaptive vibrationcontrol scheme in [13] under the same conditions

    图  19  文献[13]的频率估计器估计结果

    Fig.  19  Estimated frequency obtained by the frequency estimator in [13]

    图  20  文献[13]的方法在4.5$\sim $6 s间的间隙1功率谱密度

    Fig.  20  Power spectrum density of the gap 1 signalduring 4.5 s to 6 s using the control method in [13]

    表  1  $\hat {{ \theta} }_1 $$\hat {{ \theta} }_2 $ 的后2项参数辨识结果

    Table  1  Identification results of the last two terms of $\hat {{ \theta} }_1 $ and $\hat {{ \theta} }_2$

    $n$ $\hat {{ \theta} }_1 (n)$ $\hat {{ \theta}}_2 (n)$ 真值
    7 1.95936 1.95936 1.95952
    8 −0.99803 −0.99803 −0.99803
    下载: 导出CSV

    表  2  $\hat {{ \theta} }_1 $$\hat {{ \theta}}_2 $ 的前6项参数辨识结果

    Table  2  Identification results of the first six terms of $\hat {{ \theta} }_1 $ and $\hat {{ \theta} }_2$

    $n$ $\hat { { \theta} }_1 (n)$ $\hat { { \theta} }_2 (n)$
    1 $-5.1\times10^{-18}$ $2.89 \times 10^{-18}$
    2 $-7.64\times10^{-9}$ $13.1\times10^{-9}$
    3 $7.61\times10^{-9}$ $-13.0\times10^{-9}$
    4 $5.2 \times 10^{-18}$ $-2.9 \times 10^{-18}$
    5 $3.70\times10^{-9}$ $-6.34\times10^{-9}$
    6 $-3.68\times10^{-9}$ $6.31\times10^{-9}$
    下载: 导出CSV
  • [1] 1 Zhou D F, Hansen C H, Li J, Chang W S. Review of coupled vibration problems in EMS maglev vehicles. International Journal of Acoustics and Vibration, 2010, 15(1): 10−23
    [2] Alberts T E, Oleszczuk G, Hanasoge A M. Stable levitation control of a magnetically suspended vehicles with structural flexibility. In: Proceedings of the 2008 American Control Conference. Seattle, USA: IEEE, 2008. 4035−4040
    [3] 3 Kim K J, Han J B, Han H S, Yang S J. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds. Vehicle System Dynamics, 2015, 53(4): 587−601 doi: 10.1080/00423114.2015.1013039
    [4] Lee N, Han H, Lee J, Kang B. Maglev vehicle/guideway dynamic interaction based on vibrational experiment. In: Proceedings of the 2007 International Conference on Electrical Machines and Systems. Seoul, Korea: IEEE, 2007. 598−602
    [5] 顾行涛. 高速磁浮车辆 − 道岔梁耦合振动建模与仿真分析[硕士学位论文], 西南交通大学, 2009.

    Gu Xing-Tao. Modeling and Simulation of the High Speed Maglev Vehicle-Turnout Coupling Vibration [Master thesis], Southewest Jiaotong University, China, 2009.
    [6] 李莉, 孟光. 慢起慢落时磁浮车辆与钢轨道框架耦合共振分析. 振动与冲击, 2006, 25(6): 46−48, 75 doi: 10.3969/j.issn.1000-3835.2006.06.012

    6 Li Li, Meng Guang. Analysis of the maglev vehicle and steel guideway frame coupled resonance during levitating up and landing. Journal of Vibration and Shock, 2006, 25(6): 46−48, 75 doi: 10.3969/j.issn.1000-3835.2006.06.012
    [7] 7 Zhou D F, Hansen C H, Li J. Suppression of maglev vehicle-girder self-excited vibration using a virtual tuned mass damper. Journal of Sound and Vibration, 2011, 330: 883−901 doi: 10.1016/j.jsv.2010.09.018
    [8] Deng Y Q, Liang H Q, Luo S H. Static levitation stability simulation and control of maglev. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China: IEEE, 2006. 6213−6216
    [9] 9 Wang H P, Li J, Zhang K. Stability and Hopf bifurcation of the maglev system with delayed speed feedback control. Acta Automatica Sinica, 2007, 33(8): 829−834 doi: 10.1360/aas-007-0829
    [10] Zhou D F, Li J, Zhang K. An adaptive control method to suppress the maglev track-induced self-excited vibration. In: Proceedings of the 2011 International Conference on Consumer Electronics, Communications and Networks, Shanghai, China: IEEE, 2011. 4723−4727
    [11] 于天俊, 张伟, 杨晓东. 柔性多梁结构的解析模态分析. 全国结构工程学术会议, 中国, 厦门, 2015, I-586−I-590

    Yu Tian-Jun, Zhang Wei, Yang Xiao-Dong. Linear modal analysis of flexible multi-beam structures. In: Proceedings of the 2015 National Conference on Structural Engineering, Xiamen, China, 2015, I-586−I-590
    [12] 12 Zhou D F, Li J, Hansen C H. Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration. Journal of Sound and Vibration, 2011, 330: 5791−5811 doi: 10.1016/j.jsv.2011.07.021
    [13] 13 Zhou D F, Yu P C, Li J, Cui P, Song M X. Adaptive vibration control of the electromagnet-track coupled high frequency resonance for an urban maglev system. Transportation Systems and Technology, 2018, 4(2): 92−106 doi: 10.17816/transsyst20184292-106
    [14] 邹东升, 佘龙华, 常文森. 抑制磁浮系统车轨耦合振动的自适应陷波滤波器设计. 信息与控制, 2009, 38(2): 234−244 doi: 10.3969/j.issn.1002-0411.2009.02.019

    14 Zou Dong-Sheng, She Long-Hua, Chang Wen-Sen. Design of adaptive notch filter to suppress coupled vibration of maglev vehicle and guideway system. Information and Control, 2009, 38(2): 234−244 doi: 10.3969/j.issn.1002-0411.2009.02.019
    [15] Svetlitsky V A. Engineering Vibration Analysis (Worked Problems 2). Berlin: Springer-Verlag, 2004.
    [16] 李云钢, 常文森. 磁浮列车悬浮系统的串级控制. 自动化学报, 1999, 25(2): 247−251

    16 Li Yun-Gang, Chang Wen-Sen. Cascade control of an EMS maglev vehicle's levitation control system. Acta Automatica Sinica, 1999, 25(2): 247−251
    [17] 17 Zhou D F, Li J, Zhang K. Amplitude control of the track-induced self-excited vibration for a maglev system. ISA Transactions, 2014, 53(5): 1463−1469 doi: 10.1016/j.isatra.2013.12.016
    [18] 何修宇, 王雪璇, 赵哲惟, 张爽. 浮式海洋热能转换系统的主动振动控制与扰动观测器设计. 自动化学报, 2019, 45(10): 1846−1856 doi: 10.16383/j.aas.c180197

    18 He Xiu-Yu, Wang Xue-Xuan, Zhao Zhe-Wei, Zhang Shuang. Disturbance rejection and vibration control for a floating ocean thermal energy conversion system. Acta Automatica Sinica, 2019, 45(10): 1846−1856 doi: 10.16383/j.aas.c180197
    [19] 19 Chopade A S, Khubalkar S W, Junghare A S, Aware M V, Das S. Design and implementation of digital fractional order PID controller using optimal pole-zero approximation method for magnetic levitation system. IEEE/CAA Journal of Automatica Sinica, 2018, 5(5): 977−989 doi: 10.1109/JAS.2016.7510181
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  3014
  • HTML全文浏览量:  480
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 录用日期:  2019-07-30
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回