2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯过程的多机动扩展目标跟踪

郭云飞 李勇 任昕 彭冬亮

郭云飞, 李勇, 任昕, 彭冬亮. 基于高斯过程的多机动扩展目标跟踪. 自动化学报, 2020, 46(11): 2392−2403 doi: 10.16383/j.aas.c180849
引用本文: 郭云飞, 李勇, 任昕, 彭冬亮. 基于高斯过程的多机动扩展目标跟踪. 自动化学报, 2020, 46(11): 2392−2403 doi: 10.16383/j.aas.c180849
Guo Yun-Fei, Li Yong, Ren Xin, Peng Dong-Liang. Multiple maneuvering extended target tracking based on Gaussian process. Acta Automatica Sinica, 2020, 46(11): 2392−2403 doi: 10.16383/j.aas.c180849
Citation: Guo Yun-Fei, Li Yong, Ren Xin, Peng Dong-Liang. Multiple maneuvering extended target tracking based on Gaussian process. Acta Automatica Sinica, 2020, 46(11): 2392−2403 doi: 10.16383/j.aas.c180849

基于高斯过程的多机动扩展目标跟踪

doi: 10.16383/j.aas.c180849
基金项目: 

浙江省自然科学基金重点项目 LZ20F010002

国家自然科学基金 61871166

详细信息
    作者简介:

    李勇  杭州电子科技大学自动化学院硕士研究生.主要研究方向为扩展目标跟踪. E-mail: yong li edu@163.com

    任昕  杭州电子科技大学自动化学院硕士研究生.主要研究方向为扩展目标跟踪. E-mail: 17816123703@163.com

    彭冬亮  杭州电子科技大学自动化学院教授.主要研究方向为多传感器信息融合. E-mail: dlpeng@hdu.edu.cn

    通讯作者:

    郭云飞  杭州电子科技大学自动化学院教授.主要研究方向为目标跟踪与信息融合.本文通信作者. E-mail: gyf@hdu.edu.cn

Multiple Maneuvering Extended Target Tracking Based on Gaussian Process

Funds: 

the Zhejiang Provincial Natural Science Foundation LZ20F010002

National Natural Science Foundation of China 61871166

More Information
    Author Bio:

    LI Yong   Master student at the School of Automation, Hangzhou Dianzi University. His main research interest is extended target tracking

    REN Xin   Master student at the School of Automation, Hangzhou Dianzi University. Her main research interest is extended target tracking

    PENG Dong-Liang   Professor at the School of Automation, Hangzhou Dianzi University. His main research interest is multisensor information fusion

    Corresponding author: GUO Yun-Fei   Professor at the School at the Automation, Hangzhou Dianzi University. His research interest covers target tracking, information fusion. Corresponding author of this paper
  • 摘要: 针对杂波环境下多机动扩展目标跟踪问题, 提出一种基于高斯过程的变结构多模型联合概率数据关联方法.首先, 采用期望模型扩展方法构建自适应模型集, 并对各个扩展目标状态进行初始化.其次, 基于高斯过程建立联合跟踪门以选择有效量测, 形成联合关联矩阵.然后, 拆分联合关联矩阵得到可行关联矩阵并求解关联事件概率.最后, 利用联合概率数据关联滤波器更新各个扩展目标的状态和协方差, 并将更新的状态进行融合, 得到最终的状态估计.仿真验证了所提方法的有效性.
    Recommended by Associate Editor LAI Jian-Huang
    1)  本文责任编委  赖剑煌
  • 图  1  场景一中目标航迹和估计轨迹

    Fig.  1  True and estimated trajectories in the first scenario

    图  2  目标中心点位置估计的RMSE

    Fig.  2  RMSE of centroid position estimate

    图  3  目标中心点速度估计的RMSE

    Fig.  3  RMSE of velocity estimate

    图  4  目标轮廓点位置估计的RMSE

    Fig.  4  RMSE of contour position estimate

    图  5  目标航向角估计的RMSE

    Fig.  5  RMSE of heading estimate

    图  6  场景二中目标航迹和轮廓估计效果

    Fig.  6  True and estimated trajectories in the second scenario

    图  7  目标一中心点位置估计的RMSE

    Fig.  7  RMSE of centroid position estimate of Target 1

    图  8  目标二中心点位置估计的RMSE

    Fig.  8  RMSE of centroid position estimate of Target 2

    图  9  目标一中心点速度估计误差图

    Fig.  9  RMSE of velocity estimate of Target 1

    图  10  目标二中心点速度估计误差图

    Fig.  10  RMSE of velocity estimate of Target 2

    图  11  目标三轮廓位置估计误差图

    Fig.  11  RMSE of contour position estimate of Target 3

    图  12  目标三航向角估计误差图

    Fig.  12  RMSE of heading estimate of Target 3

    表  1  不同参数下两种方法的位置估计误差(m)

    Table  1  Position estimation error of two algorithms against different parameters (m)

    参数 参数值 IMM-RM GP-VSMM-JPDA
    $P_D$ 0.65 0.7890 0.6531
    0.80 0.4307 0.3358
    0.90 0.3189 0.2375
    $\sigma_2$ 1.0 0.3189 0.2375
    2.0 0.5735 0.4518
    4.0 0.8306 0.7331
    下载: 导出CSV

    表  2  不同参数下两种方法的速度估计误差(m/s)

    Table  2  Velocity estimation error of two algorithms against different parameters (m/s)

    参数 参数值 IMM-RM GP-VSMM-JPDA
    $P_D$ 0.65 0.7890 0.6531
    0.80 0.4307 0.3358
    0.90 0.3189 0.2375
    $\sigma_2$ 1.0 0.3189 0.2375
    2.0 0.5735 0.4518
    4.0 0.8306 0.7331
    下载: 导出CSV

    表  3  三种方法在不同参数下的中心点位置估计误差(m)

    Table  3  Position estimation error of three algorithms against different parameters (m)

    参数 参数值 ET-GM-PHD GPR-MM-ETT GP-VSMM-JPDA
    $P_D$ 目标1 目标2 目标3 目标1 目标2 目标3 目标1 目标2 目标3
    0.65 1.3134 1.1359 1.1021 1.3025 0.9516 0.9383 0.9859 0.8447 0.8103
    0.80 0.7723 0.6106 0.5863 0.5517 0.4731 0.4419 0.4561 0.4091 0.3947
    0.95 0.6865 0.4563 0.4416 0.4330 0.3616 0.3501 0.2304 0.2197 0.2053
    $\lambda_c\, /{\rm m}^{-2}$ 0.0001 0.5947 0.4132 0.3958 0.3245 0.2919 0.2767 0.2038 0.1825 0.1807
    0.0002 0.6865 0.4563 0.4331 0.4330 0.3616 0.3501 0.2304 0.2197 0.2053
    0.0004 1.1647 1.0537 0.9873 0.9107 0.8491 0.7904 0.7537 0.6735 0.6691
    下载: 导出CSV

    表  4  三种方法在不同参数下的速度估计误差

    Table  4  Velocity estimation error of three algorithms against different parameters (m/s)

    参数 参数值 ET-GM-PHD GPR-MM-ETT GP-VSMM-JPDA
    $P_D$ 目标1 目标2 目标3 目标1 目标2 目标3 目标1 目标2 目标3
    0.65 0.8051 0.7340 0.7021 0.6418 0.5622 0.5141 0.5827 0.5136 0.4835
    0.80 0.5380 0.5027 0.4715 0.4135 0.3947 0.3691 0.3968 0.3429 0.3152
    0.95 0.4127 0.3901 0.3684 0.3241 0.3028 0.2731 0.2719 0.2708 0.2493
    $\lambda_c\, /{\rm m}^{-2}$ 0.0001 0.3865 0.3310 0.3174 0.2907 0.2347 0.2109 0.2576 0.2178 0.1844
    0.0002 0.4127 0.3901 0.3684 0.3241 0.3028 0.2731 0.2719 0.2708 0.2493
    0.0004 0.7261 0.6317 0.5715 0.5108 0.4410 0.3947 0.4631 0.4147 0.3716
    下载: 导出CSV

    表  5  三种方法在不同参数下的正确航迹率

    Table  5  Correct track probability of three algorithms against different parameters

    参数 参数值 ET-GM-PHD GPR-MM-ETT GP-VSMM-JPDA
    $P_D$ 目标1 目标2 目标3 目标1 目标2 目标3 目标1 目标2 目标3
    0.65 0.65 0.73 0.79 0.76 0.85 0.88 0.81 0.85 0.87
    0.80 0.77 0.81 0.85 0.87 0.91 0.91 0.90 0.93 0.91
    0.95 0.82 0.84 0.90 0.91 0.94 0.93 0.93 0.96 0.95
    $\lambda_c\, /{\rm m}^{-2}$ 0.0001 0.88 0.93 0.93 0.93 0.97 0.94 0.95 0.97 0.96
    0.0002 0.82 0.84 0.90 0.91 0.94 0.93 0.93 0.96 0.95
    0.0004 0.71 0.77 0.85 0.82 0.85 0.87 0.84 0.88 0.87
    下载: 导出CSV
  • [1] Li W L, Jia Y M. Gaussian mixture PHD filter for multiple maneuvering extended targets tracking. In: Proceedings of Conference on Decision and Control and European Control Conference. Orlando, F L, USA: IEEE, 2011. 2411-2415
    [2] Hernandez M L, Ristic B, Farina A. Performance measure for markovian switching systems using best-fitting Gaussian distribution. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 724-747 doi: 10.1109/TAES.2008.4560217
    [3] Mahler R. PHD filters for nonstandard targets, I: Extended targets. In: Proceedings of the 12th International Conference on Information Fusion. Piscataway, NJ, USA: 2009. 915-921
    [4] 田森平, 周波, 戚其丰.基于高斯混合PHD滤波的多机动扩展目标跟踪.中南大学学报:自然科学版, 2013, 44(12): 4923-4929 http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201312022.htm

    Tian Sen-Ping, Zhou Bo, Qi Qi-Feng. Gaussian mixture PHD filter based tracking multiple maneuvering extended targets. Journal of Central South University: Science and Technology, 2013, 44(12): 4923-4929 http://www.cnki.com.cn/Article/CJFDTotal-ZNGD201312022.htm
    [5] 李翠芸, 王精毅, 姬红兵.高斯过程回归下的多机动扩展目标跟踪.西安电子科技大学学报:自然科学版, 2017, 44(6): 1001-1007 http://www.cqvip.com/QK/95202X/201706/673936653.html

    Li Cui-Yun, Wang Jing-Yi, Ji Hong-Bing. Multiple maneuvering extended targets tracking with Gaussian process regression. Journal of XIDIAN University: Science and Technology, 2017, 44(6): 1001-1007 http://www.cqvip.com/QK/95202X/201706/673936653.html
    [6] Guo Y F, Li Y, Xue A K, Tharmarasa R, Kirubarajan T. Simultaneous tracking of a maneuvering ship and its wake using Gaussian process. Signal Processing, 2020, 172: 107547 doi: 10.1016/j.sigpro.2020.107547
    [7] Wahlstrom N, Ozkan E. Extended target tracking using Gaussian processes. IEEE Transactions on Signal Processing, 2015, 63(16): 4165-4178 doi: 10.1109/TSP.2015.2424194
    [8] Vermaak J, Ikoma N, Godsill S. Sequential Monte Carlo framework for extended object tracking. IEEE Proceedings: Radar, Sonar and Navigation, 2005, 152(5): 353-363 doi: 10.1049/ip-rsn:20045044
    [9] Rrsmussen C, Williams C. Gaussian Processes for Machine Learning. Cambridge, MA, USA: MIT Press, 2016.
    [10] Huber M F. Recursive Gaussian process: Online regression and learning. Pattern Recognition Letters, 2014, 45: 12-19
    [11] Kirubarajan T, Bar-shalom Y. Probabilistic data association techniques for target tracking in clutter. In: Proceedings of the IEEE. 2004. 92(3): 536-557 doi: 10.1109/JPROC.2003.823149
    [12] Baum M, Hanebeck U. Extended object tracking with random hypersurface models. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149-159 doi: 10.1109/TAES.2013.120107
    [13] Chen B, Tugnait J K. Tracking of multiple maneuvering targets in clutter using IMM/JPDA filtering and fixed lag smoothing. Automatica, 2001, 37: 239-249 doi: 10.1016/S0005-1098(00)00158-8
    [14] Li X R, Jilkov V P, Ru J. Multiple-model estimation with variable structure--Part VI: Expected-mode augmentation. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 853-867 doi: 10.1109/TAES.2005.1541435
    [15] Guo Y F, Li Y, Tharmarasa R, Kirubarajan T. GP-PDA for extended target tracking with measurement origin uncertainty. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1640-1655 doi: 10.1109/TAES.2018.2874147
    [16] Fortmann T E, Bar-shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184 doi: 10.1109/JOE.1983.1145560
    [17] Bar-shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: Wiley, 2001.
    [18] Lan J, Li X R. Tracking of extended object or target group using random matrix: New model and approach. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2973-2989 doi: 10.1109/TAES.2016.130346
    [19] Granstrom K, Lundquist C, Orguner U. Extended target tracking using Gaussian mixture PHD filter. IEEE Transaction in Aerospace and Electronic Systems, 2012, 48(4): 3268-3286 doi: 10.1109/TAES.2012.6324703
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1256
  • HTML全文浏览量:  216
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 录用日期:  2019-05-23
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回