2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面作战目标威胁评估多属性指标处理方法

孔德鹏 常天庆 郝娜 张雷 郭理彬

孔德鹏,常天庆,郝娜,张雷,郭理彬.地面作战目标威胁评估多属性指标处理方法. 自动化学报, 2021,47(1): 161-172 doi: 10.16383/j.aas.c180675
引用本文: 孔德鹏,常天庆,郝娜,张雷,郭理彬. 地面作战目标威胁评估多属性指标处理方法. 自动化学报, 2021, 47(1): 161-172 doi: 10.16383/j.aas.c180675
Kong De-Peng, Chang Tian-Qing, Hao Na, Zhang Lei, Guo Li-Bin. Multi-attribute index processing method of target threat assessment in ground combat. Acta Automatica Sinica, 2021, 47(1): 161-172 doi: 10.16383/j.aas.c180675
Citation: Kong De-Peng, Chang Tian-Qing, Hao Na, Zhang Lei, Guo Li-Bin. Multi-attribute index processing method of target threat assessment in ground combat. Acta Automatica Sinica, 2021, 47(1): 161-172 doi: 10.16383/j.aas.c180675

地面作战目标威胁评估多属性指标处理方法

doi: 10.16383/j.aas.c180675
基金项目: 国防科技创新特区资助
详细信息
    作者简介:

    孔德鹏  陆军装甲兵学院兵器与控制系博士研究生. 2015年获得装甲兵工程学院硕士学位.主要研究方向为战场火力运用决策技术.E-mail: kongdp55@163.com

    郝娜  陆军装甲兵学院兵器与控制系副教授. 2016年获得装甲兵工程学院博士学位.主要研究方向为战场信息融合技术. E-mail: lzygdshn@163.com

    张雷  陆军装甲兵学院兵器与控制系副教授. 2010年获得装甲兵工程学院博士学位.主要研究方向为武器系统与运用工程. E-mail: 13611377719@139.com

    郭理彬   陆军装甲兵学院兵器与控制系讲师. 2006年获得国防科技大学硕士学位.主要研究方向为导航制导与控制.E-mail: binexe@126.com

    通讯作者:

    常天庆   陆军装甲兵学院兵器与控制系教授. 1999年获得清华大学博士学位.主要研究方向为火控系统智能化技术.本文通信作者. E-mail: changtianqing@263.net

Multi-attribute Index Processing Method of Target Threat Assessment in Ground Combat

Funds: Supported by National Defense Science and Technology Innovation Zone of China
More Information
    Author Bio:

    KONG De-Peng   Ph. D. candidate in the Weaponry and Control Department, Army Academy of Armored Forces. He received his master degree from Academy of Armored Forces Engineering in 2015. His research interest covers decision-making technology for battlefield firepower utilization

    HAO Na   Associate professor in the Weaponry and Control Department, Army Academy of Armored Forces. She received her Ph. D. degree from Academy of Armored Forces Engineering in 2016. Her main research interest is battlefield information fusion

    ZHANG Lei   Associate professor in the Weaponry and Control Department, Army Academy of Armored Forces. He received his Ph. D. degree from Academy of Armored Forces Engineering in 2010. His research interest covers weapon system and application engineering

    GUO Li-Bin   Lecturer in the Weaponry and Control Department, Army Academy of Armored Forces. He received his master degree from National University of Defense Technology in 2006. His research interest covers navigation guidance and control

    Corresponding author: CHANG Tian-Qing   Professor in the Weaponry and Control Department, Army Academy of Armored Forces. He received his Ph. D. degree from Tsinghua University in 1999. His research interest covers intelligent technology of fire control system. Corresponding author of this paper
  • 摘要: 评估指标的量化处理是目标威胁评估(Threat assessment, TA)算法应用的基础.本文针对地面作战目标威胁评估指标类型多样和难以量化的问题, 系统地提出了一种多属性威胁指标的量化方法, 并将指标量化结果转化为统一的直觉模糊集(Intuitionistic fuzzy set, IFS)表示形式.研究了地面作战目标威胁评估指标如目标距离、速度、攻击角度、类型、通视条件和作战环境等, 通过模糊评价语言、区间数、实数、三角模糊数等方式进行量化, 最大限度地保留指标不确定信息并降低实际应用的复杂度; 提出了不同表示形式的威胁指标数据与直觉模糊数的转化原则和转化方法, 并给出了理论可行性的数学证明.通过一个地面作战目标威胁评估的多属性指标处理实例, 验证了该方法在多属性指标量化和直觉模糊集表示中的合理性, 说明了该方法能够为目标威胁评估提供科学的评估数据.
    Recommended by Associate Editor WEI Qing-Lai
    1)  本文责任编委 魏庆来
  • 图  1  距离因素威胁度示意图

    Fig.  1  Sketch map of distance factor threat degree

    图  2  攻击角度因素威胁度示意图

    Fig.  2  Sketch map of target attack angle factor threat degree

    图  3  目标通视情况

    Fig.  3  Target visibility condition

    表  1  确定程度的区间值对应关系

    Table  1  Determination degree corresponding to interval values

    确定程度 $L$ $U$
    $c_5$ (十分确定) 0.9 1
    $c_4$ (比较确定) 0.6 0.9
    $c_3$ (一般) 0.4 0.6
    $c_2$ (不太确定) 0.2 0.4
    $c_1$ (不确定) 0 0.2
    下载: 导出CSV

    表  2  模糊评价语言标度与IFN的转化

    Table  2  Scale of fuzzy evaluation language and transformation to IFN

    模糊评价 直觉模糊数
    语言标度 $\mu $ $\upsilon $ $\pi $
    $\alpha =10$ (极大) 1 0 0
    $\alpha =9$ (很大) 0.9 0.05 0.05
    $\alpha =8$ (大) 0.8 0.1 0.1
    $\alpha =7$ (较大) 0.7 0.15 0.15
    $\alpha =6$ (稍大) 0.55 0.3 0.15
    $\alpha =5$ (中等) 0.4 0.4 0.2
    $\alpha =4$ (稍小) 0.4 0.45 0.15
    $\alpha =3$ (较小) 0.3 0.55 0.15
    $\alpha =2$ (小) 0.2 0.7 0.1
    $\alpha =1$ (很小) 0.1 0.85 0.05
    $\alpha =0$ (极小) 0 1 0
    下载: 导出CSV

    表  3  目标威胁评估指标参数

    Table  3  Index parameters of target threat assessment

    目标 $f_1$ $f_2$ $f_3$ $f_4$ $f_5$ $f_6$ $f_7$ $f_8$ $f_9$
    $T_1$ 大(十分确定) 较大(比较确定) 大(比较确定) 大(比较确定) [25, 30] [120, 150] 2 500 [0.7, 1]
    $T_2 $ 较大(比较确定) 大(一般) 大(比较确定) 较大(比较确定) [30, 35] [180, 210] 2 000 [0.3, 0.7]
    $T_3$ 中等(比较确定) 稍小(十分确定) 较大(一般) 较大(一般) [15, 20] [150, 180] 2 200 [0.7, 1]
    $T_4$ 较大(比较确定) 小(不确定) 大(一般) 中等(比较确定) [15, 20] [90, 150] 1 800 [0.3, 0.7]
    $T_5$ 很大(十分确定) 大(比较确定) 很大(一般) 很大(十分确定) [100, 150] [135, 180] 4 200 [0.7, 1]
    $T_6$ 很小(一般) 小(比较确定) 很小(十分确定) 很小(比较确定) [5, 8] [150, 210] 800 [0.7, 1]
    下载: 导出CSV

    表  4  目标距离威胁度

    Table  4  Threat degree of target distance to IFN

    目标 打击距离 有效侦察距离 距离威胁度 直觉模糊数表示
    $T_1$ 2 500 3 500 0.40 $\left\langle 0.47, 0.33 \right\rangle$
    $T_2$ 2 500 3 500 0.52 $\left\langle0.61, 0.19\right\rangle$
    $T_3$ 2 400 3 200 0.45 $\left\langle0.53, 0.27\right\rangle$
    $T_4$ 3 000 3 500 0.64 $\left\langle0.75, 0.05\right\rangle$
    $T_5$ 5 000 6 000 0.68 $\left\langle0.8, 0\right\rangle$
    $T_6$ 800 1 000 0.30 $\left\langle0.35, 0.45\right\rangle$
    下载: 导出CSV

    表  5  目标攻击角度威胁度

    Table  5  Threat degree of target attack angle

    目标 目标攻击角度 我方武器攻击角度 目标攻击角度威胁度 直觉模糊数表示
    $T_1$ [120, 150] [$-15$, 15] [0.29, 0.46] $\left\langle0.41, 0.35\right\rangle$
    $T_2$ [180, 210] [0, 30] [0.50, 0.67] $\left\langle0.71, 0.06\right\rangle$
    $T_3$ [150, 180] [$-30$, 0] [0.33, 0.5] $\left\langle0.47, 0.29\right\rangle$
    $T_4$ [90, 150] [$-15$, 15] [0.21, 0.46] $\left\langle0.29, 0.35\right\rangle$
    $T_5$ [135, 180] [$-45$, 0] [0.25, 0.5] $\left\langle0.35, 0.29\right\rangle$
    $T_6$ [150, 210] [15, 45] [0.46, 0.71] $\left\langle0.65, 0\right\rangle$
    下载: 导出CSV

    表  6  目标速度威胁度

    Table  6  Threat degree of target speed

    目标 目标速度 速度威胁度 直觉模糊数表示
    $T_1$ [25, 30] [0.50, 0.60] $\left\langle0.67, 0.2\right\rangle$
    $T_2$ [30, 35] [0.60, 0.70] $\left\langle0.8, 0.07\right\rangle$
    $T_3$ [15, 20] [0.30, 0.40] $\left\langle0.4, 0.47\right\rangle$
    $T_4$ [15, 20] [0.30, 0.40] $\left\langle0.4, 0.47\right\rangle$
    $T_5$ [100, 150] [0.50, 0.75] $\left\langle0.67, 0\right\rangle$
    $T_6$ [5, 10] [0.33, 0.53] $\left\langle0.44, 0.29\right\rangle$
    下载: 导出CSV

    表  7  目标威胁评估指标参数

    Table  7  Index parameters of target threat assessment

    目标 $f_1$ $f_2$ $f_3$ $f_4$ $f_5$ $f_6$ $f_7$ $f_8$ $f_9$
    $T_1$ $\left\langle0.79, 0.11\right\rangle$ $\left\langle0.64, 0.19\right\rangle$ $\left\langle0.79, 0.11\right\rangle$ $\left\langle0.79, 0.11\right\rangle$ $\left\langle0.67, 0.2\right\rangle$ $\left\langle0.41, 0.35\right\rangle$ $\left\langle0.47, 0.33\right\rangle$ $\left\langle0.7, 0\right\rangle$ $\left\langle0.5, 0.3\right\rangle$
    $T_2$ $\left\langle0.64, 0.19\right\rangle$ $\left\langle0.65, 0.2\right\rangle$ $\left\langle0.74, 0.14\right\rangle$ $\left\langle0.64, 0.19\right\rangle$ $\left\langle0.8, 0.07\right\rangle$ $\left\langle0.71, 0.06\right\rangle$ $\left\langle0.61, 0.19\right\rangle$ $\left\langle0.3, 0.3\right\rangle$ $\left\langle0.5, 0.3\right\rangle$
    $T_3$ $\left\langle0.4, 0.4\right\rangle$ $\left\langle0.4, 0.45\right\rangle$ $\left\langle0.65, 0.2\right\rangle$ $\left\langle0.65, 0.2\right\rangle$ $\left\langle0.4, 0.47\right\rangle$ $\left\langle0.47, 0.29\right\rangle$ $\left\langle0.53, 0.27\right\rangle$ $\left\langle0.7, 0\right\rangle$ $\left\langle0.5, 0.3\right\rangle$
    $T_4$ $\left\langle0.64, 0.19\right\rangle$ $\left\langle0.21, 0.68\right\rangle$ $\left\langle0.65, 0.2\right\rangle$ $\left\langle0.4, 0.4\right\rangle$ $\left\langle0.4, 0.47\right\rangle$ $\left\langle0.29, 0.35\right\rangle$ $\left\langle0.75, 0.05\right\rangle$ $\left\langle0.3, 0.3\right\rangle$ $\left\langle0.5, 0.3\right\rangle$
    $T_5$ $\left\langle0.89, 0.06\right\rangle$ $\left\langle0.74, 0.14\right\rangle$ $\left\langle0.76, 0.14\right\rangle$ $\left\langle0.89, 0.06\right\rangle$ $\left\langle0.67, 0\right\rangle$ $\left\langle0.35, 0.29\right\rangle$ $\left\langle0.8, 0\right\rangle$ $\left\langle0.7, 0\right\rangle$ $\left\langle0.7, 0.1\right\rangle$
    $T_6$ $\left\langle0.27, 0.58\right\rangle$ $\left\langle0.26, 0.61\right\rangle$ $\left\langle0.12, 0.82\right\rangle$ $\left\langle0.19, 0.7\right\rangle$ $\left\langle0.44, 0.29\right\rangle$ $\left\langle0.65, 0\right\rangle$ $\left\langle0.35, 0.45\right\rangle$ $\left\langle0.7, 0\right\rangle$ $\left\langle0.5, 0.3\right\rangle$
    下载: 导出CSV

    表  8  目标威胁评估结果

    Table  8  Target threat assessment results

    $S_{i}^{+}$ $[0.863, 0.858, 0.745, 0.699, 0.950, 0.601]$
    $S_{i}^{-}$ $[0.646, 0.651, 0.764, 0.810, 0.559, 0.908]$
    $p_i$ $[0.572, 0.569, 0.494, 0.463, 0.629, 0.398]$
    排序 $T_5>T_1> T_2> T_3> T_4>T_6$
    下载: 导出CSV
  • [1] Kong D P, Chang T Q, Wang Q D, et al. A threat assessment method of group targets based on interval-valued intuitionistic fuzzy multi-attribute group decision-making. Applied Soft Computing, 2018, 67(6): 350-369
    [2] Deng Y. A threat assessment model under uncertain environment. Mathematical Problems in Engineering, 2015, (9): 1-12
    [3] Huang J, Li B C, Zhao Y J. Target threat assessment based on intuitionistic fuzzy sets choquet integral. Applied Mechanics and Materials, 2013, 433-435(9): 736-743
    [4] Roux J N, Van Vuuren J H. Threat evaluation and weapon assignment decision support: A review of the state of the art. ORiON, 2007, 23(2): 151-187
    [5] Lee H, Choi B J, Kim C O, et al. Threat evaluation of enemy air fighters via neural network-based Markov chain modeling. Knowledge-Based Systems, 2017, 116(1): 49-57
    [6] 刘敬蜀, 姜文志, 雷宇曜, 等.动态火力接入下要地防空作战目标威胁评估.北京航空航天大学学报, 2016, 42(7): 1422-1431 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201607013.htm

    Liu Jing-Shu, Jiang Wen-Zhi, Lei Yu-Yao, et al. Threat evaluation of air-targets for key positions air-defense under dynamic fire access. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1422-1431 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201607013.htm
    [7] Looney C G, Liang L R. Cognitive situation and threat assessments of ground battlespaces. Information Fusion, 2003, 4(4): 297-308 doi: 10.1016/S1566-2535(03)00044-7
    [8] A. M G. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological Review, 1956, 63(2): 81-97 doi: 10.1037/h0043158
    [9] Maccrimmon K R. Decisionmaking among multiple- attribute alternatives: a survey and consolidated approach. Report RM-4823-ARPA, Santa Monica: RAND Corporation, 1968.
    [10] Naseem A, Shah S T H, Khan S A, et al. Decision support system for optimum decision making process in threat evaluation and weapon assignment: Current status, challenges and future directions. Annual Reviews in Control, 2017, 43: 169-187 doi: 10.1016/j.arcontrol.2017.03.003
    [11] 毛红保, 冯卉, 张亮, 等.基于MADM组合赋权的空中目标威胁评估方法.信息工程大学学报, 2014, 15(3): 281-285 https://www.cnki.com.cn/Article/CJFDTOTAL-XXGC201403005.htm

    Mao Hong-Bao, Feng Hui, Zhang Liang, et al. Aerial targets threat evaluation method based on combination weighting for MADM. Journal of Information Engineering University, 2014, 15(3): 281-285 https://www.cnki.com.cn/Article/CJFDTOTAL-XXGC201403005.htm
    [12] 陈维义, 王少蕾, 周菲.基于加权核主成分TOPSIS方法的舰艇防空威胁评估.海军工程大学学报, 2014, 26(1): 87-91 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX201401018.htm

    Chen Wei-Yi, Wang Shao-Lei, Zhou Fei. Threat evaluation of air targets to ships in air defense based on weighted KPCA-TOPSIS. Journal of Naval University of Engineering, 2014, 26(1): 87-91 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX201401018.htm
    [13] Atanassov K T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96 doi: 10.1016/S0165-0114(86)80034-3
    [14] Szmidt E, Kacprzyk J. Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 2001, 118(3): 467-477 doi: 10.1016/S0165-0114(98)00402-3
    [15] Zhang H, Yu L. New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Information Sciences, 2013, 245(10): 181-196
    [16] Xu Z S. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making. Fuzzy Optimization and Decision Makings, 2007, 6(2): 109-121 doi: 10.1007/s10700-007-9004-z
    [17] Guo K. Knowledge measure for Atanassov$'$s intuitionistic fuzzy sets. IEEE Transactions on Fuzzy Systems, 2016, 24(5): 1072-1078 doi: 10.1109/TFUZZ.2015.2501434
    [18] Xu Z S. Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 2007, 15(6): 1179-1187 doi: 10.1109/TFUZZ.2006.890678
    [19] Liu P, Chen S M. Group decision making based on heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Transactions on Cybernetics, 2017, 47(9): 2514-2530 doi: 10.1109/TCYB.2016.2634599
    [20] Xu Z S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowledge-Based Systems, 2011, 24(6): 749-760 doi: 10.1016/j.knosys.2011.01.011
    [21] Nguyen H. A new knowledge-based measure for intuitionistic fuzzy sets and its application in multiple attribute group decision making. Expert Systems with Applications, 2015, 42(22): 8766-8774 doi: 10.1016/j.eswa.2015.07.030
    [22] 王毅, 刘三阳, 张文, 等.属性权重不确定的直觉模糊多属性决策的威胁评估方法.电子学报, 2014, 42(12): 2509-2514 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201412025.htm

    Wang Yi, Liu San-Yang, Zhang Wen, et al. Threat assess ment method with uncertain attribute weight based on intuitionistic fuzzy multi-attribute decision. Acta Electronica Sinica, 2014, 42(12): 2509-2514 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201412025.htm
    [23] 武华, 苏秀琴.基于群广义直觉模糊软集的空袭目标威胁评估方法.控制与决策, 2015, 30(8): 1462-1468 https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201508019.htm

    Wu Hua, Su Xiu-Qin. Threat assessment of aerial targets based on group generalized intuitionistic fuzzy soft sets. Control and Decision, 2015, 30(8): 1462-1468 https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201508019.htm
    [24] 张堃, 王雪, 张才坤, 等.基于IFE动态直觉模糊法的空战目标威胁评估.系统工程与电子技术, 2014, 36(4): 697-701 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201404016.htm

    Zhang Kun, Wang Xue, Zhang Cai-Kun, et al. Evaluating and sequencing of air target threat based on IFE and dynamic intuitionistic fuzzy sets. Systems Engineering and Electronics, 2014, 36(4): 697-701 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201404016.htm
    [25] 郭辉, 徐浩军, 刘凌.基于区间数TOPSIS法的空战目标威胁评估.系统工程与电子技术, 2009, 31(12): 2914-2917 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200912028.htm

    Guo Hui, Xu Hao-Jun, Liu Ling. Threat assessment for air combat target based on interval TOPSIS. Systems Engineering and Electronics, 2009, 31(12): 2914-2917 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200912028.htm
    [26] 徐泽水.对方案有偏好的三角模糊数型多属性决策方法研究.系统工程与电子技术, 2002, 24(8): 9-12 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200208003.htm

    Xu Zhe-Shui. Study on method for triangular fuzzy number-based multi-attribute decision making with preference information on alternatives. Systems Engineering and Electronics, 2002, 24(8): 9-12 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200208003.htm
    [27] Zhai Y L, Xu Z S, Liao H C. Probabilistic linguistic vector-term set and its application in group decision making with multi-granular linguistic information. Applied Soft Computing, 2016, 49(12): 801-816
    [28] Xu Z S. Deviation measures of linguistic preference relations in group decision making. Omega, 2005, 33(3): 249-254 doi: 10.1016/j.omega.2004.04.008
    [29] 黄家辉, 冯冬芹, 王虹鉴.基于攻击图的工控系统脆弱性量化方法.自动化学报, 2016, 42(5): 792-798 doi: 10.16383/j.aas.2016.c150517

    Huang Jia-Hui, Feng Dong-Qin, Wang Hong-Jian. A method for quantifying vulnerability of industrial control system based on attack graph. Acta Automatica Sinica, 2016, 42(5): 792-798 doi: 10.16383/j.aas.2016.c150517
    [30] Kumar S, Tripathi B K. Modelling of threat evaluation for dynamic targets using Bayesian network approach. Procedia Technology, 2016, 24: 1268-1275 doi: 10.1016/j.protcy.2016.05.112
    [31] Naeem H, Masood A. An optimal dynamic threat evaluation and weapon scheduling technique. Knowledge-Based Systems, 2010, 23(4): 337-342 doi: 10.1016/j.knosys.2009.11.012
    [32] Chen S M, Cheng S H, Lan T C. Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values. Information Sciences, 2016, 367-368(11): 279-295
  • 加载中
图(3) / 表(8)
计量
  • 文章访问数:  1406
  • HTML全文浏览量:  699
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-07
  • 录用日期:  2019-02-13
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回