2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FPDE的红外与可见光图像融合算法

高雪琴 刘刚 肖刚 BAVIRISETTIDurga Prasad 史凯磊

高雪琴, 刘刚, 肖刚, BAVIRISETTIDurga Prasad, 史凯磊. 基于FPDE的红外与可见光图像融合算法. 自动化学报, 2020, 46(4): 796-804. doi: 10.16383/j.aas.2018.c180188
引用本文: 高雪琴, 刘刚, 肖刚, BAVIRISETTIDurga Prasad, 史凯磊. 基于FPDE的红外与可见光图像融合算法. 自动化学报, 2020, 46(4): 796-804. doi: 10.16383/j.aas.2018.c180188
GAO Xue-Qin, LIU Gang, XIAO Gang, BAVIRISETTI Durga Prasad, SHI Kai-Lei. Fusion Algorithm of Infrared and Visible Images Based on FPDE. ACTA AUTOMATICA SINICA, 2020, 46(4): 796-804. doi: 10.16383/j.aas.2018.c180188
Citation: GAO Xue-Qin, LIU Gang, XIAO Gang, BAVIRISETTI Durga Prasad, SHI Kai-Lei. Fusion Algorithm of Infrared and Visible Images Based on FPDE. ACTA AUTOMATICA SINICA, 2020, 46(4): 796-804. doi: 10.16383/j.aas.2018.c180188

基于FPDE的红外与可见光图像融合算法

doi: 10.16383/j.aas.2018.c180188
基金项目: 

国家重点基础研究发展计划(973计划) 2014CB744903

国家自然科学基金 61673270

国家自然科学基金 61203224

上海浦江人才计划 16PJD028

详细信息
    作者简介:

    高雪琴  上海电力学院自动化工程学院硕士研究生.主要研究方向为图像融合. E-mail: gxq0163@163.com

    肖刚  上海交通大学航空航天学院教授. 2004年获得上海交通大学博士学位.主要研究方向为先进航空电子综合仿真, 智能信息处理.E-mail:xiaogang@sjtu.edu.cn

    BAVIRISETTIDurga Prasad:BAVIRISETTI Durga Prasad  上海交通大学航空航天学院博士后. 2016年获得印度韦洛尔科技大学博士学位.主要研究方向为图像融合, 目标跟踪, 机器学习和计算机视觉. E-mail:bdps1989@sjtu.edu.cn

    史凯磊  上海电力学院自动化工程学院硕士研究生.主要研究方向为机器视觉. E-mail: 18321779651@163.com

    通讯作者:

    刘刚 上海电力学院自动化工程学院教授. 2005年获得上海交通大学博士学位.主要研究方向为模式识别, 机器学习.本文通信作者. E-mail: liugang@shiep.edu.cn

  • 本文责任编委 黄庆明

Fusion Algorithm of Infrared and Visible Images Based on FPDE

Funds: 

National Basic Research Program of China (973 Program) 2014CB744903

National Natural Science Foundation of China 61673270

National Natural Science Foundation of China 61203224

Shanghai Pujiang Talent Program 16PJD028

More Information
    Author Bio:

    GAO Xue-Qin   Master student at the School of Automation Engineering, Shanghai University of Electrical Power, China. Her main research interest is image fusion

    XIAO Gang   Professor at the School of Aeronautics and Astronautics, Shanghai Jiao Tong University, China. He received his Ph. D. degree from Shanghai Jiao Tong University, China in 2004. His research interest covers advanced avionics integrated simulation and intelligent information processing

    BAVIRISETTI Durga Prasad   Postdoctor at the School of Aeronautics and Astronautics, Shanghai Jiao Tong University. He received his Ph. D. degree from Vellore Institute of Technology, India. His research interest covers image fusion, target tracking, machine learning, and computer vision

    SHI Kai-Lei   Master student at the School of Automation Engineering, Shanghai University of Electrical Power, China. His main research interest is machine vision

    Corresponding author: LIU Gang  Professor at the School of Automation Engineering, Shanghai University of Electrical Power, China. He received his Ph. D. degree from Shanghai Jiao Tong University, China in 2005. His research interest covers pattern recognition and machine learning. Corresponding author of this paper
  • Recommended by Associate Editor HUANG Qing-Ming
  • 摘要: 针对传统红外与可见光图像融合算法中存在的细节信息不够丰富, 边缘信息保留不够充分等问题, 文中提出了一种基于四阶偏微分方程(Fourth-order partial differential equation, FPDE)的改进的图像融合算法.算法首先采用FPDE将已配准的红外与可见光图像进行分解, 得到高频分量和低频分量; 然后, 对高频分量采用基于主成分分析(Principal component analysis, PCA)的融合规则来得到细节图像, 对低频分量采用基于期望值最大(Expectation maximization, EM)的融合规则来得到近似图像; 最后, 通过组合最终的高频分量和低频分量来重构得到最终的融合结果.实验是建立在标准的融合数据集上进行的, 并与传统的和最近的融合方法进行比较, 结果证明所提方法得到的融合图像比现有的融合方法能有效地综合红外与可见光图像中的重要信息, 有更好的视觉效果.
    Recommended by Associate Editor HUANG Qing-Ming
    1)  本文责任编委 黄庆明
  • 图  1  本文算法的流程图

    Fig.  1  Flow chart of the algorithm of this paper

    图  2  "dune"图像的融合结果

    Fig.  2  The fusion result of image "dune"

    图  3  "pavilion"图像的融合结果

    Fig.  3  The fusion result of image "pavilion"

    图  4  "maninhuis"图像的融合结果

    Fig.  4  The fusion result of image "maninhuis"

    图  5  "UN Camp"图像的融合结果

    Fig.  5  The fusion result of image "UN Camp"

    图  6  其他6组图像的融合结果

    Fig.  6  The fusion result of other six groups of images

    表  1  "dune"的融合结果的客观指标评价结果

    Table  1  Objective evaluation result of the fusion result of "dune"

    融合方法 MI IE SD EIPV
    GRAD 1.2948 4.9 37.9309 0.4278
    RATIO 0.7248 4.2485 18.5883 0.3546
    DWT 0.6542 4.3821 21.0136 0.3841
    FPDE 0.7339 4.2997 19.6550 0.4821
    CVT-SR 1.5809 4.8953 38.4630 0.4408
    VSM 0.7053 4.3278 20.1876 0.4085
    本文方法 2.4647 5.0006 41.2892 0.5106
    下载: 导出CSV

    表  2  "pavilion"的融合结果的客观指标评价结果

    Table  2  Objective evaluation result of the fusion result of "pavilion"

    融合方法 MI IE SD EIPV
    GRAD 1.9984 4.4074 26.9211 0.4625
    RATIO 1.2350 4.4073 25.5996 0.3724
    DWT 1.1351 4.4671 28.2542 0.4197
    FPDE 1.3621 4.3829 25.8059 0.3846
    CVT-SR 1.3812 5.2110 48.8611 0.4251
    VSM 1.2409 4.4436 27.8868 0.4451
    本文方法 3.1240 4.8207 59.5605 0.4671
    下载: 导出CSV

    表  3  "maninhuis"的融合结果的客观指标评价结果

    Table  3  Objective evaluation result of the fusion result of "maninhuis"

    融合方法 MI IE SD EIPV
    GRAD 1.6169 4.7116 28.0854 0.4814
    RATIO 0.9408 4.6744 26.7289 0.3857
    DWT 0.9312 4.7941 30.4888 0.4371
    FPDE 1.0689 4.7081 27.4131 0.4516
    CVT-SR 1.3302 5.151 46.7314 0.5015
    VSM 1.0296 4.760 29.3688 0.4921
    本文方法 3.2612 5.036 57.1928 0.5091
    下载: 导出CSV

    表  4  "UN Camp"的融合结果的客观指标评价结果

    Table  4  Objective evaluation result of the fusion result of "UN Camp"

    融合方法 MI IE SD EIPV
    GRAD 1.3059 4.8571 36.0841 0.3918
    RATIO 1.0455 4.3359 22.9454 0.3895
    DWT 1.0314 4.4535 24.9950 0.3641
    FPDE 1.0894 4.3503 22.9777 0.4234
    CVT-SR 1.1538 4.7549 32.5279 0.3635
    VSM 1.0753 4.3991 23.9920 0.4064
    本文方法 2.5529 4.9069 41.5711 0.4461
    下载: 导出CSV

    表  5  其他6组图像客观评价结果

    Table  5  Objective evaluation result of the other six groups of images

    融合方法 GRAD RATIO DWT FPDE CVT-SR VSM 本文方法
    MI 1.9322 1.3495 1.2301 1.3235 1.4803 1.3201 2.9112
    IE 4.9659 4.3952 4.4904 4.4409 4.8827 4.4594 4.9711
    SD 49.5321 23.9142 25.5283 24.3822 41.2654 26.6849 51.8051
    EIPV 0.4732 0.3491 0.4651 0.5244 0.4653 0.4857 0.5276
    下载: 导出CSV

    表  6  各种融合方法的计算时间对比

    Table  6  Computational time comparison of different fusion methods

    融合方法 GRAD RATIO DWT FPDE CVT-SR VSM 本文方法
    时间(s) 2.7914 0.6909 1.6567 8.1072 5.4289 5.6316 71.7869
    下载: 导出CSV
  • [1] 童涛, 杨桄, 孟强强, 孙嘉成, 叶怡, 陈晓榕.基于边缘特征的多传感器图像融合算法.红外与激光工程, 2014, 43(1): 311-317 doi: 10.3969/j.issn.1007-2276.2014.01.055

    Tong Tao, Yang Guang, Meng Qiang-Qiang, Sun Jia-Cheng, Ye Yi, Chen Xiao-Rong. Multi-sensor image fusion algorithm based on edge feature. Infrared and Laser Engineering, 2014, 43(1): 311-317 doi: 10.3969/j.issn.1007-2276.2014.01.055
    [2] Li Shu-Tao, Kang Xu-Dong, Fang Le-Yuan, Hu Jian-Wen, Yin Hai-Tao. Pixel-level image fusion: A survey of the state of the art. Information Fusion, 2017, 33(1): 100-112
    [3] Zhang Qiong, Maldague Xavier. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing. Infrared Physics and Technology, 2016, 74(1): 11-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b634893125f83498d0b8613c8c9ec69
    [4] Lee M W, Kwak K C. Performance Comparison of Infrared and Visible Image Fusion Approaches. In: Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Prague, Czech Republic: 2017. 274-277
    [5] Burt P J, Adelson E H.The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532-540 doi: 10.1109/TCOM.1983.1095851
    [6] 肖进胜, 饶天宇, 贾茜, 宋金钟, 易本顺.基于图切割的拉普拉斯金字塔图像融合算法.光电子·激光, 2014, 25(07): 1416-1424 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201407032

    Xiao Jin-Sheng, Rao Tian-Yu, Jia Qian, Song Jin-Zhong, Yi Ben-Shun. An image fusion algorithm of Laplacian pyramid based on graph cuting. Journal of Optoelectronics·Laser, 2014, 25(07): 1416-1424 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201407032
    [7] Burt P J, A gradient pyramid basis for pattern-selective image fusion, In: Proceedings of the SID International Symposium. New York, USA: 1992. 467-470
    [8] Alexander Toet, Image fusion by a ratio of low-pass pyramid. Pattern Recognition Letters, 1989, 9(4): 245-253 doi: 10.1016/0167-8655(89)90003-2
    [9] 李建林, 俞建成, 孙胜利.基于梯度金字塔图像融合的研究.科学技术与工程, 2007, 7(22): 5818-5822 doi: 10.3969/j.issn.1671-1815.2007.22.018

    Li Jian-Lin, Yu Jian-Cheng, Sun Sheng-Li. Research on image fusion based on gradient pyramid. Science Technology and Engineering, 2007, 7(22): 5818-5822 doi: 10.3969/j.issn.1671-1815.2007.22.018
    [10] Xiang Yan, Qin Han-Lin, Li Jia, Zhou Hui-Xin, Zong Jing-Guo. Infrared and visible image fusion with spectral graph wavelet transform. Journal of the Optical Society of America A Optics Image Science & Vision, 2015, 32(9): 1643-1652 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0da6606f5b60ddc886110a710f7e7b12
    [11] Pal C, Das P, Chakrabarti A, Ghosh R. Rician noise removal in magnitude MRI images using efficient anisotropic diffusion filtering. International Journal of Imaging Systems and Technology, 2017, 27(3): 248-264 doi: 10.1002/ima.22230
    [12] 钱伟新, 刘瑞根, 王婉丽, 祁双喜, 王伟, 程晋明.基于图像特征方向的各向异性扩散滤波方法.中国图象图形学报, 2006, 11(6): 818-822 doi: 10.3969/j.issn.1006-8961.2006.06.008

    Qian Wei-Xin, Liu Rui-Gen, Wang Wan-Li, Qi Shuang-Xi, Wang Wei, Cheng Jin-Ming. The anisotropic diffusion methods based on the directions of the image feature. Journal of Image and Graphics, 2006, 11(6): 818-822 doi: 10.3969/j.issn.1006-8961.2006.06.008
    [13] You Yu-Li, Kaveh M. Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 2000, 9(10): 1723-1730 doi: 10.1109/83.869184
    [14] Bavirisetti D P, Xiao G, Liu G. Multi-sensor image fusion based on fourth order partial differential equations. International Conference on Information Fusion. Xi'an, China: IEEE, 2017. 1-9
    [15] Strang G. Introduction to Applied Mathematic, New York, Wellesley-Cambridge. Springer, 1986. 166-179
    [16] Himanshi, Bhateja V, Krishn A, Sahu A. An improved medical image fusion approach using PCA and complex wavelets. In: Proceedings of International Conference on Medical Imaging, M-Health and Emerging Communication Systems, Greater Noida, India: IEEE, 2015. 442-447
    [17] Yang J, Blum R S. A statistical signal processing approach to image fusion for concealed weapon detection. In: Proc- eedings of the 2002 International Conference on Image Processing, New York, USA: IEEE, 2002. 513-516
    [18] TNO Image Fusion Dataset[Online], available: https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029, September 15, 2018
    [19] Kadar I. Pixel-level image fusion: the case of image sequences. In: Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3374: 378-388
    [20] Ma Jin-Lei, Zhou Zhi-Qiang, Wang Bo, Zong Hua. Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Physics & Technology, 2017, 82: 8-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cf016ce28d21ceabc85edf6d555f29c
    [21] Liu Yu, Liu Shu-Ping, Wang Zeng-Fu. A general framework for image fusion based on multi-scale transform and sparse representation. Information Fusion, 2015, 24: 147-164 doi: 10.1016/j.inffus.2014.09.004
    [22] 张小利, 李雄飞, 李军.融合图像质量评价指标的相关性分析及性能评估.自动化学报, 2014, 40(2): 306-315 doi: 10.3724/SP.J.1004.2014.00306

    Zhang Xiao-Li, Li Xiong-Fei, Li Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion. Acta Automatica Sinica, 2014, 40(2): 306-315 doi: 10.3724/SP.J.1004.2014.00306
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  1596
  • HTML全文浏览量:  2032
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 录用日期:  2018-09-12
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回