2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生成对抗网络的漫画草稿图简化

卢倩雯 陶青川 赵娅琳 刘蔓霄

卢倩雯, 陶青川, 赵娅琳, 刘蔓霄. 基于生成对抗网络的漫画草稿图简化. 自动化学报, 2018, 44(5): 840-854. doi: 10.16383/j.aas.2018.c170486
引用本文: 卢倩雯, 陶青川, 赵娅琳, 刘蔓霄. 基于生成对抗网络的漫画草稿图简化. 自动化学报, 2018, 44(5): 840-854. doi: 10.16383/j.aas.2018.c170486
LU Qian-Wen, TAO Qing-Chuan, ZHAO Ya-Lin, LIU Man-Xiao. Sketch Simplification Using Generative Adversarial Networks. ACTA AUTOMATICA SINICA, 2018, 44(5): 840-854. doi: 10.16383/j.aas.2018.c170486
Citation: LU Qian-Wen, TAO Qing-Chuan, ZHAO Ya-Lin, LIU Man-Xiao. Sketch Simplification Using Generative Adversarial Networks. ACTA AUTOMATICA SINICA, 2018, 44(5): 840-854. doi: 10.16383/j.aas.2018.c170486

基于生成对抗网络的漫画草稿图简化

doi: 10.16383/j.aas.2018.c170486
详细信息
    作者简介:

    卢倩雯  四川大学硕士研究生.2015年获得上海大学学士学位.主要研究方向为机器视觉, 模式识别, 机器学习, 图像处理.E-mail:lqwjk2018@163.com

    赵娅琳  四川大学硕士研究生.2014年获得重庆交通大学学士学位.主要研究方向为机器视觉, 模式识别, 机器学习, 图像处理.E-mail:caeluszhao@yeah.cn

    刘蔓霄  四川大学硕士研究生.2016年获得成都学院学士学位.主要研究方向为机器视觉, 模式识别, 机器学习, 图像处理.E-mail:18708179608@163.com

    通讯作者:

    陶青川  四川大学电子信息学院副教授.分别于1997年、2000年和2005年获得四川大学学士学位、硕士学位和博士学位.主要研究方向为机器视觉, 模式识别, 机器学习, 图像处理和三维显微成像技术.本文通信作者.E-mail:taoqingchuan@scu.edu.cn

Sketch Simplification Using Generative Adversarial Networks

More Information
    Author Bio:

     Master student at Sichuan University. She received her bachelor degree from Shanghai University in 2015. Her research interest covers computer vision, pattern recognition, machine learning, and image processing

     Master student at Sichuan University. She received her bachelor degree from Chongqing Jiaotong University in 2014. Her research interest covers computer vision, pattern recognition, machine learning, and image processing

     Master student at Sichuan University. She received her bachelor degree from Chengdu University in 2016. Her research interest covers computer vision, pattern recognition, machine learning, and image processing

    Corresponding author: TAO Qing-Chuan  Associate professor at the College of Electronics and Information Engineering, Sichuan University. He received his bachelor degree, master degree, and Ph. D. degree from Sichuan University, in 1997, 2000, and 2005, respectively. His research interest covers computer vision, pattern recognition, machine learning, image processing, and optical sectioning microscopy 3D imaging technique. Corresponding author of this paper
  • 摘要: 在漫画绘制的过程中,按草稿绘制出线条干净的线稿是很重要的一环.现有的草图简化方法已经具有一定的线条简化能力,然而由于草图的绘制方式的多样性以及画面复杂程度的不同,这些方法适用范围有限且效果不理想.本文提出了一种新颖的草图简化方法,利用条件随机场(Conditional random field,CRF)和最小二乘生成式对抗网络(Least squares generative adversarial networks,LSGAN)理论搭建了深度卷积神经网络的草图简化模型,通过该网络生成器与判别器之间的零和博弈与条件约束,得到更加接近真实的简化线稿图.同时,为了训练对抗模型的草图简化能力,本文建立了包含更多绘制方式与不同内容的草图与简化线稿图对的训练数据集.实验表明,本文算法对于复杂情况下的草图,相比于目前的方法,具有更好的简化效果.
    1)  本文责任编委 王坤峰
  • 图  1  草稿图和与之对应的模型结果图

    Fig.  1  Original sketches and output images of model

    图  2  模型示意图

    Fig.  2  Schematic figure of model

    图  3  本文网络输出图与使用了Lossmap的Simo-Serra[10]的结果图对比

    Fig.  3  The comparison of our model outputs and results from Simo-Serra algorithm[10] with the usage of lossmaps

    图  4  在大图中截取用于训练的小图示意

    Fig.  4  Extracting small images from the original images for training

    图  5  图片集构成

    Fig.  5  Images dataset construction

    图  6  数位板与纸质草稿图中的线条对比

    Fig.  6  The comparison of lines in sketches drawed on digital tablet and real paper

    图  7  三网络损失函数变化图

    Fig.  7  Curve of loss functions changing with iterations

    图  8  三个网络的输出图随迭代次数变化对比

    Fig.  8  Outputs of three models changing with iterations

    图  9  本文网络输出图、最小二乘生成式对抗网络输出图、最小二乘生成式对抗网络与全连接条件随机场优化结合的输出图对比

    Fig.  9  The comparison of outputs from our model, LSGAN model and the model combined with LSGAN and CRF

    图  10  模型输出与向量化结果图对比

    Fig.  10  Comparison between output of our model and image after vectorization

    图  11  多尺寸草图获得的算法生成图对比

    Fig.  11  The comparison of output images obtained by different sizes of imput images

    图  12  不同草图与本文模型对应的生成图

    Fig.  12  Fake images generated by our generator using different sketches

    图  13  macro-F1与macro-F1$_{s}$对比图

    Fig.  13  Experiment on the influence of range change on macro-F1 and macro-F1$_{s}$

    图  14  本文算法与其他算法的两组对比图

    Fig.  14  Compared with outputs of the latest algorithms

    表  1  基于条件随机场和最小二乘生成式对抗网络的草图简化模型

    Table  1  Sketch simplification model based on the conditional random field and least squares generative adversarial networks

    序号 层类型 卷积核 步长 深度 序号 层类型 卷积核 步长 深度
    0 Input - - 1 20 Up-convolution 4×4 1/2×1/2 128
    1 Down-convolution 5×5 2×2 48 21 Flat-convolution 3×3 1×1 128
    2 Flat-convolution 3×3 1×1 128 22 Flat-convolution 3×3 1×1 48
    3 Flat-convolution 3×3 1×1 128 23 Up-convolution 4×4 1/2×1/2 48
    4 Down-convolution 3×3 2×2 256 24 Flat-convolution 3×3 1×1 24
    5 Flat-convolution 3×3 1×1 256 25 Flat-convolution 3×3 1×1 1
    6 Flat-convolution 3×3 1×1 256 26 Convolution 5×5 1×1 20
    7 Down-convolution 3×3 2×2 256 27 Convolution 5×5 1×1 50
    8 Flat-convolution 3×3 1×1 512 28 Convolution 4×4 1×1 500
    9 Flat-convolution 3×3 1×1 1 024 29 Convolution 5×5 2×2 500
    10 Flat-convolution 3×3 1×1 1 024 30 Convolution 5×5 2×2 500
    11 Flat-convolution 3×3 1×1 1 024 31 Convolution 5×5 2×2 500
    12 Flat-convolution 3×3 1×1 1 024 32 Convolution 5×5 2×2 500
    13 Flat-convolution 3×3 1×1 1 024 33 Convolution 5×5 2×2 1 000
    14 Flat-convolution 3×3 1×1 1 024 34 Convolution 5×5 2×2 1 000
    15 Flat-convolution 3×3 1×1 512 35 Convolution 4×4 2×2 1 000
    16 Flat-convolution 3×3 1×1 256 36 Fully-connected 1×1 1×1 2
    17 Up-convolution 4×4 1/2×1/2 256 37 Dloss - - -
    18 Flat-convolution 3×3 1×1 256 38 Gloss - - -
    19 Flat-convolution 3×3 1×1 128
    下载: 导出CSV

    表  2  生成器网络生成简化图所需时间

    Table  2  Time needed for generating a simplified image by the generator

    图片大小(像素) 像素个数 GPU (Nvidia gtx980ti) (s)
    500×500 250 000 1.377
    1 500×1 500 2 250 000 11.632
    2 000×2 000 4 000 000 21.431
    下载: 导出CSV

    表  3  利用测试集获得的Simo-Serra[10]简化模型输出图和本文简化模型输出图的宏查全率、宏查准率和宏F1的测试结果

    Table  3  Test results of macro-$R$, macro-$P$ and macro-F1 of output images of Simo-Serra[10] simplification model and output images of our model using test dataset

    测试项目 Simo-Serra模型结果图 本文模型结果图
    宏查全率(范围为5像素×5像素) 0.6660 0.7278
    宏查准率(范围为5像素×5像素) 0.7105 0.7078
    宏F1 (范围为5像素×5像素) 0.6875 0.7181
    下载: 导出CSV
  • [1] 孙旭, 李晓光, 李嘉锋, 卓力.基于深度学习的图像超分辨率复原研究进展.自动化学报, 2017, 43(5):697-709 http://www.aas.net.cn/CN/abstract/abstract19048.shtml

    Sun Xu, Li Xiao-Guang, Li Jia-Feng, Zhuo Li. Review on deep learning based image super-resolution restoration algorithms. Acta Automatica Sinica, 2017, 43(5):697-709 http://www.aas.net.cn/CN/abstract/abstract19048.shtml
    [2] 张慧, 王坤峰, 王飞跃.深度学习在目标视觉检测中的应用进展与展望.自动化学报, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection Acta Automatica Sinica, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml
    [3] Wilson B, Ma K L. Rendering complexity in computer-generated pen-and-ink illustrations. In: Proceedings of the 3rd International Symposium on Non-Photorealistic Animation and Rendering. New York, NY, USA: ACM, 2004. 129-137
    [4] Grabli S, Durand F, Sillion F X. Density measure for line-drawing simplification. In: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications. Seoul, South Korea: IEEE, 2004. 309-318
    [5] Cole F, DeCarlo D, Finkelstein A, Kin K, Morley K, Santella A. Directing gaze in 3D models with stylized focus. In: Proceedings of the 17th Eurographics Conference on Rendering Techniques. Nicosia, Cyprus: ACM, 2006. 377-387
    [6] Grimm C, Joshi P. Just Drawit: a 3D sketching system. In: Proceedings of the 2012 International Symposium on Sketch-Based Interfaces and Modeling. Annecy, France: ACM, 2012. 121-130
    [7] Fišer J, Asente P, Sýkora D. ShipShape: a drawing beautification assistant. In: Proceedings of the 2015 Workshop on Sketch-Based Interfaces and Modeling. Istanbul, Turkey: ACM, 2015. 49-57
    [8] Orbay G, Kara L B. Beautification of design sketches using trainable stroke clustering and curve fitting. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(5):694-708 doi: 10.1109/TVCG.2010.105
    [9] Liu X T, Wong T T, Heng P A. Closure-aware sketch simplification. ACM Transactions on Graphics (TOG), 2015, 34(6):Article No. 168 https://dl.acm.org/citation.cfm?id=2818067
    [10] Simo-Serra E, Iizuka S, Sasaki K, Ishikawa H. Learning to simplify:fully convolutional networks for rough sketch cleanup ACM Transactions on Graphics (TOG), 2016, 35(4):Article No. 121 https://dl.acm.org/citation.cfm?id=2925972
    [11] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. In: Proceedings of the 2014 Advances in Neural Information Processing Systems (NIPS). Montreal, Canada: Curran Associates, Inc., 2014. 2672-2680
    [12] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml
    [13] Qi G J. Loss-sensitive generative adversarial networks on Lipschitz densities. ArXiv: 1701. 06264, 2017.
    [14] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. ArXiv: 1701. 07875, 2017.
    [15] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the 2015 International Conference on Learning Representations (ICLR). San Diego, CA, USA: ICLR, 2015.
    [16] Mao X D, Li Q, Xie H R, Lau R Y K, Wang Z, Smolley S P. Least squares generative adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2813-2821
    [17] Huang Q X, Han M, Wu B, Ioffe S. A hierarchical conditional random field model for labeling and segmenting images of street scenes. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO, USA: IEEE, 2011. 1953-1960
    [18] Yang M Y, Förstner W. A hierarchical conditional random field model for labeling and classifying images of man-made scenes. In: Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain: IEEE, 2011. 196-203
    [19] Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848 doi: 10.1109/TPAMI.2017.2699184
    [20] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: PMLR, 2015.
    [21] Selinger P. Potrace: a polygon-based tracing algorithm[Online], available: http://potrace.sourceforge.net/potrace.pdf, May 10, 2017
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  4918
  • HTML全文浏览量:  615
  • PDF下载量:  755
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 录用日期:  2018-01-09
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回