2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有总能耗约束的柔性作业车间调度问题研究

雷德明 杨冬婧

雷德明, 杨冬婧. 具有总能耗约束的柔性作业车间调度问题研究. 自动化学报, 2018, 44(11): 2083-2091. doi: 10.16383/j.aas.2018.c170345
引用本文: 雷德明, 杨冬婧. 具有总能耗约束的柔性作业车间调度问题研究. 自动化学报, 2018, 44(11): 2083-2091. doi: 10.16383/j.aas.2018.c170345
LEI De-Ming, YANG Dong-Jing. Research on Flexible Job Shop Scheduling Problem With Total Energy Consumption Constraint. ACTA AUTOMATICA SINICA, 2018, 44(11): 2083-2091. doi: 10.16383/j.aas.2018.c170345
Citation: LEI De-Ming, YANG Dong-Jing. Research on Flexible Job Shop Scheduling Problem With Total Energy Consumption Constraint. ACTA AUTOMATICA SINICA, 2018, 44(11): 2083-2091. doi: 10.16383/j.aas.2018.c170345

具有总能耗约束的柔性作业车间调度问题研究

doi: 10.16383/j.aas.2018.c170345
基金项目: 

国家自然科学基金 71471151

国家自然科学基金 61573264

数字制造装备与技术国家重点实验室开放课题 DMETKF2017015

详细信息
    作者简介:

    杨冬婧  武汉理工大学自动化学院硕士研究生.主要研究方向为制造系统智能优化与调度.E-mail:niceydj@163.com

    通讯作者:

    雷德明  武汉理工大学自动化学院教授.主要研究方向为智能系统优化与控制.本文通信作者.E-mail:deminglei11@163.com

Research on Flexible Job Shop Scheduling Problem With Total Energy Consumption Constraint

Funds: 

National Natural Science Foundation of China 71471151

National Natural Science Foundation of China 61573264

Open project of State Key Laboratory of Digital Manufacturing Equipment and Technology DMETKF2017015

More Information
    Author Bio:

     Master student at the School of Automation, Wuhan University of Technology. Her research interest covers maufacturing systems intelligent optimization and scheduling

    Corresponding author: LEI De-Ming  Professor at the School of Automation, Wuhan University of Technology. His research interest covers intelligent system optimization and control. Corresponding author of this paper
  • 摘要: 针对具有总能耗约束的柔性作业车间调度问题(Flexible job shop scheduling problem,FJSP),提出一种基于帝国竞争算法(Imperialist competitive algorithm,ICA)和变邻域搜索(Variable neighborhood search,VNS)的双阶段算法,该算法在总能耗不超过给定阈值的条件下最小化Makespan和总延迟时间.由于能耗约束不是总能满足且阈值往往难以事先给定,为此,第一阶段,首先,将原问题转化为具有Makespan、总延迟时间和总能耗的三目标FJSP,然后,利用初始帝国构建和帝国竞争的新策略设计一种ICA对问题求解,并根据ICA的结果确定总能耗阈值;第二阶段,应用解的比较新策略、非劣解集更新方法和当前解周期性更新,构建VNS对原问题求解.计算实验和结果分析表明,两阶段算法对于所研究的问题搜索能力强.
    1)  本文责任编委  鲁仁全
  • 表  1  $\delta $的设置

    Table  1  The setting on $\delta $

    $\delta $Instances$\delta $Instances
    $[0.5, 0.7]$MK01, MK03-05$[1.0, 1.5]$DP1-12
    $[0.3, 0.5]$MK02, 06, 08-10$[1.2, 1.6]$MK11-15
    $[0, 1, 0.3]$Ka4$\times $5, 10$\times $7, 15$\times $10$[0.7, 0.9]$MK07
    $[1.2, 1.7]$DP13-18$[0.05, 0.2]$Ka10$\times $10
    下载: 导出CSV

    表  2  阈值的确定

    Table  2  Decision on threshold

    所有$Q_i $大于$\bar {Q}$的$Q_i $剩余的$Q_i $
    216.7, 198.9, 227.3, 218.0230.2, 231.6231.6, 245.9
    230.2, 224.6, 231.6, 244.4244.4, 237.7237.7
    218.9, 208.2, 237.7, 221.4253.4, 245.9253.4
    223.1, 253.4, 245.9, 232.4232.4, 254.1232.4
    207.6, 254.1, 284.1, 216.4284.1284.1
    下载: 导出CSV

    表  3  总能耗阈值和三种算法的ATEC和MTEC

    Table  3  Total energy consumption threshold and ATEC and MTEC of three algorithms

    Instance$Q_{EC} $两阶段算法NSGA-ⅡVNS
    ATECMTECATEC MTECATEC MTEC
    Ka4$\times $5152.396.15495.25996.08095.25995.25995.259
    Ka10$\times $7245.9196.27185.41194.39193.26200.52193.50
    Ka10$\times $10159.5124.81121.26130.29128.24132.17124.26
    Ka15$\times $10443.3313.85302.87325.01321.45365.49354.56
    MK01682.4653.38650.79666.54664.84655.55654.41
    MK02550.7509.51496.17525.17519.14508.72506.36
    MK033 597314 8.63 128.23 311.53 291.13 278.43 235.5
    MK041 1911 083.41 064.41 097.51 078.41 086.41 074.9
    MK052 7482 628.12 619.82 588.02 578.72 648.42 631.6
    MK062 3492 162.82 145.92 189.42 168.52 127.02 106.3
    MK071 7281 504.21 486.01 567.61 561.11 524.61 517.7
    MK0810 1569 786.49 713.110 0049 976.49 747.89 747.8
    MK099 0828 627.08 604.98 996.08 961.38 622.38 572.3
    MK109 7288 537.18 536.28 991.68 955.69 022.78 972.6
    MK1112 89012 41512 27612 64012 57712 41712 353
    MK1214 93314 29114 22014 31414 14814 21414 109
    MK1314 20213 13113 10413 84513 76313 38213 310
    MK1416 98514 91614 85615 30715 23915 02014 981
    MK1517 00013 79313 65613 87713 78613 64313 612
    DP134 53433 82933 74534 11734 02633 90233 758
    DP240 33238 57438 39438 87438 81338 65438 512
    DP336 42835 27135 08635 70135 50435 36735 215
    DP436 88036 17135 65636 07735 74236 22536 089
    DP540 08538 81538 76639 42839 25238 88238 619
    DP637 09135 88235 72936 44536 16236 18535 897
    DP726 37360 66760 54261 03360 98960 70760 673
    DP852 42249 94849 87050 63850 62750 72250 527
    DP964 53962 39562 23263 45863 20263 28262 966
    DP1060 35058 58058 13359 24259 14559 27759 070
    DP1157 61355 54855 37356 33256 26056 11855 612
    DP1260 71158 02257 98159 28858 94758 26058 220
    DP1386 14284 38284 33585 04685 02785 20085 062
    DP1483 00080 94080 80382 33282 13581 88981 787
    DP1573 00070 97770 63172 03371 85471 80071 702
    DP1680 46878 79078 58479 97679 87879 41779 266
    DP1786 67784 88684 79885 96385 67585 39485 324
    DP1886 33084 11483 68584 95184 78585 04584 679
    下载: 导出CSV

    表  4  三种算法的计算结果

    Table  4  Computational results of three algorithms

    InstanceDIR$\rho _l $
    两阶段算法NSGA-ⅡVNS两阶段算法NSGA-ⅡVNS
    Ka4$\times $51.2350.8901.1250.3070.2220.370
    Ka10$\times $715.100.00020.650.0001.0000.000
    Ka10$\times $100.0040.340.0860.9690.0000.031
    Ka15$\times $100.2569.45635.880.8890.1110.000
    MK010.4466 1217.3050.6940.0000.306
    MK020.003 7319.326 1.0000.000.00
    MK030.00051.9030.71 1.0000.000.00
    MK042 7632 9301 6520.6000.1500.250
    MK053.11959.047.0240.6670.0000.333
    MK0618.1545.790.000.000.001.000
    MK070.00031.499.899 1.0000.000.00
    MK080.00025.0410.86 1.0000.000.00
    MK090.00049.7610.23 1.0000.000.00
    MK100.00038.2418.00 1.0000.000.00
    MK1113.423 2651 3250.5880.0000.412
    MK120.003 7011 542 1.0000.000.00
    MK130.00064.4032.30 1.0000.000.00
    MK140.00060.0423.99 1.0000.000.00
    MK150.29739.9919.860.9440.0000.056
    DP10.002 5281 324 1.0000.000.00
    DP27.50739.164.6630.5500.0000.45
    DP31.42437.625.6380.9150.0000.085
    DP41 4272 9117 3020.7500.0000.250
    DP55.86150.894.4520.5830.0000.417
    DP60.00052.1612.64 1.0000.000.00
    DP70.00033.5319.41 1.0000.000.00
    DP80.65242.320.470.9880.0000.012
    DP90.00066.4334.33 1.0000.000.00
    DP100.5434 83611.200.9500.0000.050
    DP110.00034.2114.03 1.0000.000.00
    DP122.59767.654.8140.6670.0000.333
    DP130.003 32620.31 1.0000.000.00
    DP140.25846.0812640.9810.0000.019
    DP150.00046.2019.04 1.0000.000.00
    DP160.00067.3444.41 1.0000.000.00
    DP170.00034.6916.09 1.0000.000.00
    DP180.00039.6421.59 1.0000.000.00
    下载: 导出CSV

    表  5  三种算法的计算时间

    Table  5  Comparisons on the computational times of three algorithms

    InstanceRunning time (s)InstanceRunning time (s)
    两阶段算法NSGA-ⅡVNS两阶段算法NSGA-ⅡVNS
    Ka4$\times $50.6880.6660.272DP110.7410.8513.03
    Ka10$\times $71.9013.3411.795DP212.9111.3514.52
    Ka10$\times $101.8793.3231.984DP311.5910.9614.67
    Ka15$\times $103.3394.3373.417DP411.8311.4911.76
    MK012.7914.0683.136DP511.2110.9411.73
    MK022.7994.0373.358DP610.8411.1811.47
    MK037.3517.5958.498DP718.3318.0919.68
    MK044.1105.1414.895DP818.2617.4619.84
    MK056.7405.3356.600DP917.0217.8018.79
    MK067.6546.0377.419DP1018.7317.8420.16
    MK075.2386.0725.325DP1117.5818.0219.78
    MK0814.1813.9815.31DP1217.7517.9219.82
    MK0912.5414.8414.87DP1331.5431.9428.87
    MK1012.5113.1614.82DP1430.2432.1427.82
    MK1112.2912.2712.39DP1529.4131.7028.97
    MK1212.8413.4414.93DP1631.7433.5627.42
    MK1313.2013.6215.08DP1731.1341.8428.07
    MK1416.6316.7718.95DP1829.3832.9628.71
    MK1516.1416.6018.65
    下载: 导出CSV
  • [1] Brucker R, Schlie R. Job-shop scheduling with multi-purpose machines. Computing, 1990, 45(4):369-375 doi: 10.1007/BF02238804
    [2] Kacem I, Hammadi S, Borne P. Pareto-optimality approach for flexible job-shop scheduling problems:hybridization of evolutionary algorithms and fuzzy logic. Mathematics and Computers in Simulation, 2002, 60(3-5):245-276 doi: 10.1016/S0378-4754(02)00019-8
    [3] Gao J, Gen M, Sun L Y, Zhao X H. A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Computers & Industrial Engineering, 2007, 53(1):149-162 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a96c53ae0265c4f5ac1c25a3529ef27
    [4] Chiang T C, Lin H J. A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. International Journal of Production Economics, 2013, 141(1):87-98 doi: 10.1016/j.ijpe.2012.03.034
    [5] Yuan Y, Xu H. Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Transaction on Automation Science & Engineering, 2015, 12(1):336-353 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234915959/
    [6] Rohaninejad M, Kheirkhah A, Fattahi P, Vahedi-Nouri B. A hybrid multi-objective genetic algorithm based on the ELECTRE method for a capacitated flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 2015, 77(1-4):51-66 doi: 10.1007/s00170-014-6415-1
    [7] Li J Y, Huang Y, Niu X W. A branch population genetic algorithm for dual-resource constrained job shop scheduling problem. Computers & Industrial Engineering, 2016, 102:113-131 http://www.sciencedirect.com/science/article/pii/S0360835216303813
    [8] Ahmadi E, Zandieh M, Farrokh M, Emami S M. A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Computers & Operations Research, 2016, 73:56-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80f01cd8a69ff45e37a8aab25b3d7ff3
    [9] Shen X N, Han Y, Fu J Z. Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Computing, 2017, 21(21):6531-6554 doi: 10.1007/s00500-016-2245-4
    [10] Rohaninejad M, Sahraeian R, Nouri B V. Multi-objective optimization of integrated lot-sizing and scheduling problem in flexible job shops. RAIRO-Operations Research, 2015, 50(3):587-609 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbd7e8b974e989af6947a2f05ce099b5
    [11] Singh M R, Singh M, Mahapatra S S, Jagadev N. Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi-objective flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2016, 85(9-12):2353-2366 doi: 10.1007/s00170-015-8075-1
    [12] Gao K Z, Suganthan P N, Pan Q K, Chua T J, Cai T X, Chong C S. Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling. Information Sciences, 2014, 289:76-90 doi: 10.1016/j.ins.2014.07.039
    [13] Li J Q, Pan Q K, Tasgetiren M F. A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities. Applied Mathematical Modelling, 2014, 38(3):1111-1132 doi: 10.1016/j.apm.2013.07.038
    [14] Li J Q, Pan Q K, Suganthan P N, Chua T J. A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology, 2011, 52(5-8):683-698 doi: 10.1007/s00170-010-2743-y
    [15] Jia S, Hu Z H. Path-relinking tabu search for the multi-objective flexible job shop scheduling problem. Computers & Operations Research, 2014, 47:11-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8633135d13caf01d3bd4a8eba7e48685
    [16] Bagheri A, Zandieh M. Bi-criteria flexible job-shop scheduling with sequence-dependent setup times-variable neighborhood search approach. Journal of Manufacturing Systems, 2011, 30(1):8-15 doi: 10.1016/j.jmsy.2011.02.004
    [17] Li J Q, Pan Q K, Xie S X. An effective shuffled frog-leaping algorithm for multi-objective flexible job shop scheduling problems. Applied Mathematics and Computation, 2012, 218(18):9353-9371 doi: 10.1016/j.amc.2012.03.018
    [18] Wang L, Wang S Y, Liu M. A Pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. International Journal of Production Research, 2013, 51(12):3574-3592 doi: 10.1080/00207543.2012.752588
    [19] Tang D B, Dai M. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem. Chinese Journal of Mechanical Engineering, 2015, 28(5):1048-1055 doi: 10.3901/CJME.2015.0617.082
    [20] Liu Y, Tiwari A. An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer. Procedia CIRP, 2015, 29:722-727 doi: 10.1016/j.procir.2015.01.063
    [21] He Y, Li Y F, Wu T, Sutherland J W. An energy-responsive optimization method for machine tool selection and operation sequence in flexible machining job shops. Journal of Cleaner Production, 2015, 87:245-254 doi: 10.1016/j.jclepro.2014.10.006
    [22] Zhang R, Chiong R. Solving the energy-efficient job shop scheduling problem:a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 2016, 112:3361-3375 doi: 10.1016/j.jclepro.2015.09.097
    [23] 蒋增强, 左乐.低碳策略下的多目标柔性作业车间调度.计算机集成制造系统, 2015, 21(4):1023-1031 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201504017

    Jiang Zeng-Qiang, Zuo Le. Multi-objective flexible job-shop scheduling based on low-carbon strategy. Computer Integrated Manufacturing Systems, 2015, 21(4):1023-1031 http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201504017
    [24] 唐立力.求解低碳调度问题的改进型候鸟优化算法.计算机工程与应用, 2016, 52(17):166-171 doi: 10.3778/j.issn.1002-8331.1510-0255

    Tang Li-Li. Improved migrating birds optimization algorithm to solve low-carbon scheduling problem. Computer Engineering and Applications, 2016, 52(17):166-171 doi: 10.3778/j.issn.1002-8331.1510-0255
    [25] Yin L J, Li X Y, Gao L, Lu C, Zhang Z. A novel mathematical model and multi-objective method for the low-carbon flexible job shop scheduling problem. Sustainable Computing:Informatics and Systems, 2017, 13:15-30 doi: 10.1016/j.suscom.2016.11.002
    [26] Lei D M, Zheng Y L, Guo X P. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. International Journal of Production Research, 2017, 55(11):3126-3140 doi: 10.1080/00207543.2016.1262082
    [27] 雷德明.基于新型教学优化算法的低碳柔性作业车间调度.控制与决策, 2017, 32(9):1621-1627 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201709011

    Lei De-Ming. Novel teaching-learning-based optimization algorithm for low carbon scheduling of flexible job shop. Control and Decision, 2017, 32(9):1621-1627 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201709011
    [28] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197 doi: 10.1109/4235.996017
    [29] Hosseini S, Khaled A A. A survey on the imperialist competitive algorithm metaheuristic:implementation in engineering domain and directions for future research. Applied Soft Computing, 2014, 24:1078-1094 doi: 10.1016/j.asoc.2014.08.024
    [30] Lian K L, Zhang C Y, Gao L, Shao X Y. Single row facility layout problem using an imperialist competitive algorithm. In:Proceedings of the 41st International Conference on Computers & Industrial Engineering. Los Angeles, USA:Elsevier, 2011. 578-586
    [31] Hosseini S, Khaled A A, Vadlamani S. Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 2014, 25(7-8):1871-1885 doi: 10.1007/s00521-014-1678-x
    [32] Karimi N, Zandieh M, Najafl A A. Group scheduling in flexible flow shops:a hybridised approach of imperialist competitive algorithm and electromagnetic-like mechanism. International Journal of Production Research, 2011, 49(16):4965-4977 doi: 10.1080/00207543.2010.481644
    [33] Behnamian J, Zandieh M. A discrete colonial competitive algorithm for hybrid flow shop scheduling to minimize earliness and quadratic tardiness penalties. Expert Systems with Applications, 2011, 38(12):14490-14498 doi: 10.1016/j.eswa.2011.04.241
    [34] Goldansaz S M, Jolai F, Anaraki A H Z. A hybrid imperialist competitive algorithm for minimizing makespan in a multi-processor open shop. Applied Mathematical Modelling, 2013, 37(23):9603-9616 doi: 10.1016/j.apm.2013.05.002
    [35] Naderi B, Yazdani M. A model and imperialist competitive algorithm for hybrid flow shops with sublots and setup times. Journal of Manufacturing Systems, 2014, 33(4):647-653 doi: 10.1016/j.jmsy.2014.06.002
    [36] Matic A, Osmani V, Mayora-Ibarra O. Analysis of social interactions through mobile phones. Mobile Networks and Applications, 2012, 17(6):808-819 doi: 10.1007/s11036-012-0400-4
    [37] Karimi S, Ardalan Z, Naderi B, Mohammadi M. Scheduling flexible job-shops with transportation times:mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 2017, 41:667-682 doi: 10.1016/j.apm.2016.09.022
    [38] Zhou W, Yan J J, Li Y, Xia C M, Zheng J R. Imperialist competitive algorithm for assembly sequence planning. International Journal of Advanced Manufacturing Technology, 2013, 67(9-12):2207-2216 doi: 10.1007/s00170-012-4641-y
    [39] Wang B X, Guan Z L, Li D S, Zhang C Y, Chen L. Two-sided assembly line balancing with operator number and task constraints:a hybrid imperialist competitive algorithm. International Journal of Advanced Manufacturing Technology, 2014, 74(5-8):791-805 doi: 10.1007/s00170-014-5816-5
    [40] 张鑫龙, 郑秀万, 肖汉, 李伟.一种求解旅行商问题的新型帝国竞争算法.控制与决策, 2016, 31(4):586-592 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201604002

    Zhang Xin-Long, Zheng Xiu-Wan, Xiao Han, Li Wei. A new imperialist competitive algorithm for solving TSP problem. Control and Decision, 2016, 31(4):586-592 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201604002
    [41] Lei D M. Simplified multi-objective genetic algorithms for stochastic job shop scheduling. Applied Soft Computing, 2011, 11(8):4991-4996 doi: 10.1016/j.asoc.2011.06.001
    [42] Afruzi E N, Najafi A A, Roghanian E, Mazinani M. A multi-objective imperialist competitive algorithm for solving discrete time, cost and quality trade-off problems with mode-identity and resource-constrained situations. Computers & Operations Research, 2014, 50:80-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=458b4c42f5fcfd3da9ca411187242f38
    [43] Bayareh M, Mohammadi M. Multi-objective optimization of a triple shaft gas compressor station using Imperialist Competitive Algorithm. Applied Thermal Engineering, 2016, 109:384-400 doi: 10.1016/j.applthermaleng.2016.08.089
    [44] Kemmoé S, Lamy D, Tchernev N. A job-shop with an energy threshold issue considering operations with consumption peaks. IFAC-PagesOnLine, 2015, 28(3):788-793 http://www.sciencedirect.com/science/article/pii/S2405896315004188
    [45] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 1993, 41(3):157-183 doi: 10.1007/BF02023073
    [46] Dauzére-Pérés S, Paulli J. An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations Research, 1997, 70:281-306 doi: 10.1023/A:1018930406487
    [47] Knowles J, Corne D. On metrics for comparing nondominated sets. In:Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA:IEEE, 2002. 711-716
    [48] Lei D M. Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. International Journal of Advanced Manufacturing Technology, 2008, 37(1-2):157-165 doi: 10.1007/s00170-007-0945-8
  • 加载中
计量
  • 文章访问数:  2138
  • HTML全文浏览量:  223
  • PDF下载量:  1085
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 录用日期:  2017-09-07
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回