2.765

2022影响因子

(CJCR)

• 中文核心
• EI
• 中国科技核心
• Scopus
• CSCD
• 英国科学文摘

## 留言板

 引用本文: 周笔锋, 罗毅平. 时滞分布参数系统中和控制器设计. 自动化学报, 2018, 44(12): 2222-2227.
ZHOU Bi-Feng, LUO Yi-Ping. Neutralization Control of Distributed Parameter Systems With Delay. ACTA AUTOMATICA SINICA, 2018, 44(12): 2222-2227. doi: 10.16383/j.aas.2018.c170084
 Citation: ZHOU Bi-Feng, LUO Yi-Ping. Neutralization Control of Distributed Parameter Systems With Delay. ACTA AUTOMATICA SINICA, 2018, 44(12): 2222-2227.

## Neutralization Control of Distributed Parameter Systems With Delay

Funds:

National Natural Science Foundation of China 11372107

Natural Science Foundation of Hunan Province 2017JJ4004

Natural Science Foundation of Hunan Province 20 17JJ5011

Hunan Provincial Key Laboratory of Wind Generator and Its Control 2017FLFDYB03

###### Corresponding author:LUO Yi-Ping   Professor at Hunan Institute of Engineering. He received his Ph. D. degree from South China University of Technology in 2006. His research interest covers complex networks and distributed parameter systems. Corresponding author of this paper
• 摘要: 首先给出中和控制器设计思路，针对具有时滞特性的分布参数系统，设计中和控制器，讨论此类系统的稳定问题.利用Lyapunov稳定性理论并结合矩阵不等式处理方法，得出具有时滞特性分布参数系统稳定中和控制器存在的充分条件.最后结合所给条件，给出一个数值仿真说明其有效性.
1)  本文责任编委 姚鹏飞
• 图  1  分布参数系统$W(x, t)$状态图

Fig.  1  The state of distributed parameter systems $W(x, t)$

图  2  控制系统$\chi (x, t)$状态图

Fig.  2  The state of controller $\chi(x, t)$

•  [1] Ray W H. Advanced Process Control. New York: McGraw-Hill, 1981. [2] Christofides P D. Nonlinear and Robust Control of PDE Systems. Boston: Birkhäuser Boston, 2001. [3] Deng H, Li H X, Chen G R. Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology, 2005, 13:686-700 [4] Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33:59-68 [5] Baillieul J. Linearized models for the control of rotating beams. In: Proceedings of the 27th Conference on Decision and Control. Austin, Texas, USA: IEEE, 1989, 3: 1726-1731 [6] Najar F, Choura S, Abdel-Rahman E M, El-Borgi S, Nayfeh A. Dynamic analysis of variable-geometry electrostatic microactuators. Journal of Micromechanics and Microengineering, 2006, 16(11):2449-2457 [7] Ly C, Doiron B. Correction:divisive gain modulation with dynamic stimuli in integrate-and-fire neurons. PLoS Computational Biology, 2009, 5(6), DOI: 10.1371/annota-tion/9c4474f6-e58e-41ea-af4b-090bbb86f474 [8] Luo Y P, Xia W H, Liu G R, Deng F Q. LMI approach to exponential stabilization of distributed parameter control systems with delay. Acta Automatica Sinica, 2009, 35(3):299-304 http://www.ams.org/mathscinet-getitem?mr=2535951 [9] 高存臣, 刘振, 徐瑞萍.一类具有连续分布时滞的分布参数系统的反馈控制.控制与决策, 2013, 28(3):445-450 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201303022Gao Cun-Chen, Liu Zhen, Xu Rui-Ping. Feedback control for a class of distributed Parameter systems with continuous distributed time-delay. Control and Decision, 2013, 28(3):445-450 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201303022 [10] Xing H L, Li D H, Gao C C, Kao Y G. Delay-independent sliding mode control for a class of quasi-linear parabolic distributed parameter systems with time-varying delay. Journal of the Franklin Institute, 2013, 350(2):397-418 [11] Yuan K, Alofi A, Cao J D, Al-Mazrooei A, Elaiw A. Synchronization of the coupled distributed parameter system with time delay via proportional-spatial derivative control. Discrete Dynamics in Nature and Society, 2014, 2014: Article No. 418258 [12] Babaei D, Armaou P A. Adaptive control of chemical distributed parameter systems. IFAC-PapersOnLine, 2015, 48(8):681-686 [13] Demetriou M A. Boundary adaptive synchronization of networked PDEs with adaptive parameter estimators. IFAC-PapersOnLine, 2016, 49(8):242-247 [14] Jiang Z X, Cui B T, Wu W, Zhuang B. Event-driven observer-based control for distributed parameter systems using mobile sensor and actuator. Computers and Mathematics with Applications, 2016, 72(12):2854-2864 [15] Wang Z P, Wu H N. Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Information Sciences, 2016, 327:21-39 [16] 郭涛, 梁燕军.不确定非线性时滞关联大系统自适应分散容错控制.自动化学报, 2017, 43(3):486-492 http://www.aas.net.cn/CN/abstract/abstract19027.shtmlGuo Tao, Liang Yan-Jun. Adaptive decentralized fault-tolerant control for uncertain nonlinear time-delay large scale systems. Acta Automatica Sinica, 2017, 43(3):486-492 http://www.aas.net.cn/CN/abstract/abstract19027.shtml [17] Chen W H, Zhong J C, Zheng W X. Delay-independent stabilization of a class of time-delay systems via periodically intermittent control. Automatica, 2016, 71:89-97 [18] Xie T T, Liao X F, Li H Q. Leader-following consensus in second-order multi-agent systems with input time delay:an event-triggered sampling approach. Neurocomputing, 2016, 177:130-135 [19] Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1994. [20] 崔宝同, 楼旭阳.时滞分布参数系统理论及其应用.北京:国防工业出版社, 2009. 8-12Cui Bao-Tong, Lou Xu-Yang. Theory and Application of Time-Delay Distributed Parameter System. Beijing:National Defense Industry Press, 2009. 8-12

##### 计量
• 文章访问数:  1637
• HTML全文浏览量:  219
• PDF下载量:  564
• 被引次数: 0
##### 出版历程
• 收稿日期:  2017-02-17
• 录用日期:  2017-05-26
• 刊出日期:  2018-12-20

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈