2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚拟未建模动态补偿驱动的双率自适应控制

杨天皓 李健 贾瑶 刘腾飞 柴天佑

杨天皓, 李健, 贾瑶, 刘腾飞, 柴天佑. 虚拟未建模动态补偿驱动的双率自适应控制. 自动化学报, 2018, 44(2): 299-310. doi: 10.16383/j.aas.2018.c160623
引用本文: 杨天皓, 李健, 贾瑶, 刘腾飞, 柴天佑. 虚拟未建模动态补偿驱动的双率自适应控制. 自动化学报, 2018, 44(2): 299-310. doi: 10.16383/j.aas.2018.c160623
YANG Tian-Hao, LI Jian, JIA Yao, LIU Teng-Fei, CHAI Tian-You. Dual-rate Adaptive Control Driven by Virtual Unmodeled Dynamics Compensation in Industrial Heat Exchange Process. ACTA AUTOMATICA SINICA, 2018, 44(2): 299-310. doi: 10.16383/j.aas.2018.c160623
Citation: YANG Tian-Hao, LI Jian, JIA Yao, LIU Teng-Fei, CHAI Tian-You. Dual-rate Adaptive Control Driven by Virtual Unmodeled Dynamics Compensation in Industrial Heat Exchange Process. ACTA AUTOMATICA SINICA, 2018, 44(2): 299-310. doi: 10.16383/j.aas.2018.c160623

虚拟未建模动态补偿驱动的双率自适应控制

doi: 10.16383/j.aas.2018.c160623
基金项目: 

国家自然科学基金 61603393

国家高技术研究发展计划(863计划) 2015AA043802

中国博士后科学基金 2015M581355

详细信息
    作者简介:

    杨天皓  北京矿冶科技集团有限公司助理工程师.2014年和2017年在东北大学获得学士学位和硕士学位.主要研究方向为选冶过程的建模, 控制与优化.E-mail:yangtianhao@bgrimm.com

    贾瑶  流程工业综合自动化国家重点实验室博士研究生.主要研究方向为复杂工业过程控制理论及技术.E-mail:jiayao_neu@163.com

    刘腾飞  东北大学教授.主要研究方向为非线性系统稳定性, 鲁棒控制, 自适应控制, 分布式控制.E-mail:tfliu@mail.neu.edu.cn

    柴天佑  中国工程院院士, 东北大学教授.IEEE Fellow, IFAC Fellow, 欧亚科学院院士.主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论, 方法与技术.E-mail:tychai@mail.neu.edu.cn

Dual-rate Adaptive Control Driven by Virtual Unmodeled Dynamics Compensation in Industrial Heat Exchange Process

Funds: 

National Natural Science Foundation of China 61603393

National High Technology Research and Development Program of China (863 Program) 2015AA043802

China Postdoctoral Science Foundation 2015M581355

More Information
    Author Bio:

     Assistant engineer at the Institute of Information Technology and Automation, Beijing General Research Institute of Mining and Metallurgy (BGRIMM) Technology Group. He received his bachelor and master degrees from Northeastern University in 2014 and 2017, respectively. His research interest covers modeling, controlling, and optimization in the process of beneficiation and metallurgy

     Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers process control theory and technology for complex industry process

     Professor at Northeastern University. His research interest covers nonlinear systems stability, robust control, adaptive control, and distributed control

     Academician of Chinese Academy of Engineering, professor at Northeastern University, IEEE Fellow, IFAC Fellow, and academician of the International Eurasian Academy of Sciences. His research interest covers adaptive control, intelligent decoupling control, as well as theories, methods and technology of integrated automation of process industry

    Corresponding author: LI Jian  Research assistant at the State Key Laboratory of Synthetical Automation for Process Industries. His research interest covers technology for ntergrated automation system of industrial process. Corresponding author of this paper
  • 摘要: 工业换热过程是蒸汽与循环水在换热器中进行热交换,使供水温度达到工艺规定的目标范围内的复杂工业过程.由于存在蒸汽压力、回水流量波动以及换热器内管壁结垢的扰动,导致被控对象模型参数发生未知随机的大范围变化,使控制器积分作用失效,造成内环蒸汽流量和外环供水温度波动,相互影响,甚至谐振.针对上述问题,利用工业换热过程运行在工作点附近的特点,用确定性低阶线性模型和虚拟未建模动态来描述被控过程.将自适应信号法与双率控制技术相结合,提出了以蒸汽流量为内环输出、以供水温度为外环输出的双率自适应控制器,并给出了该控制器的稳定性和收敛性分析.本文将工业换热过程机理模型作为被控对象,进行了半实物仿真.结果表明,对于工业换热过程,在模型参数大范围变化时,本文提出的控制方法可以将供水温度控制在工艺要求的目标范围内.
    1)  本文责任编委 姜斌
  • 图  1  工业换热过程工艺流程图

    Fig.  1  Flow chart of industrial heat exchange process

    图  2  工业换热过程双率串级控制结构框图

    Fig.  2  Block diagram of dual-rate cascade control in industrial heat exchange process

    图  3  蒸汽流量虚拟未建模动态补偿控制结构框图

    Fig.  3  Block diagram of virtual unmodeled dynamics compensation control in vapor flow process

    图  4  供水温度虚拟未建模动态补偿控制结构框图

    Fig.  4  Block diagram of virtual unmodeled dynamics compensation control in supply-water temperature process

    图  5  基于西门子S7-300的半实物仿真平台

    Fig.  5  Semi-physical simulation platform based on Siemens S7-300

    图  6  被控对象计算机监控界面

    Fig.  6  Monitoring interface of virtual plant

    图  7  蒸汽压力$P_1$、回水流量$F_3$、换热效率$\eta$、污垢修正系数$\beta$的变化曲线

    Fig.  7  Curve of Vapor pressure $P_1$, return-water flow $F_3$, efficiency of heat exchange $\eta$ and fouling correction factor $\beta$

    图  8  本文控制方法的供水温度及控制律$u$

    Fig.  8  Supply-water temperature and control law $u$ under the control method in this paper

    图  9  常规自校正串级控制方法的供水温度及控制律$u$

    Fig.  9  Supply-water temperature and control law $u$ under traditional self-tuning cascade control

    图  10  文献[6]控制方法的供水温度及控制律$u$

    Fig.  10  Supply-water temperature and control law $u$ under the control method in [6]

    表  1  供水温度性能评价指标(℃)

    Table  1  Evaluating indicator of supply-water temperature (℃)

    超过区间最大值 超过区间绝对累积和 绝对误差累积和 误差均方差
    本文控制方法 0 0 96.3753 0.2174
    常规自校正PI串级 0.971 2.974 297.5423 1.9730
    文献[6]控制方法 0.732 2.012 22.1754 1.2980
    下载: 导出CSV
  • [1] 石兆玉.供热系统运行调节与控制.北京:清华大学出版社, 1994.

    Shi Zhao-Yu. The Adjustment of Heating System and Control. Beijing:Tsinghua University Press, 1994.
    [2] Zhang J, Sun H X, Zhang J T. Application of adaptive fuzzy sliding-mode controller for heat exchanger system in district heating. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation. Changsha, China: IEEE, 2008. 850-854
    [3] Wang S Y, Ji F, Du J L, Wang W B. Temperature control of heat exchange station based on ITGC. In: Proceedings of the 2010 International Conference on Intelligent Control and Information Processing. Dalian, China: IEEE, 2010. 394-397
    [4] Pandey M, Ramkumar K, Alagesan V. Design of fuzzy logic controller for a cross flow shell and tube heat-exchanger. In: Proceedings of the 2012 International Conference on Advances in Engineering, Science and Management. Nagapattinam, Tamil Nadu, India: IEEE, 2012. 150-154
    [5] Rauh A, Dittrich C, Aschemann H, Nedialkov N S, Pryce J D. A differential-algebraic approach for robust control design and disturbance compensation of finite-dimensional models of heat transfer processes. In: Proceedings of the 2013 IEEE International Conference on Mechatronics. Vicenza, Italy: IEEE, 2013. 40-45
    [6] 贾瑶, 柴天佑.汽水板式换热过程区间串级智能控制方法.自动化学报, 2016, 42 (1):37-46 http://www.aas.net.cn/CN/abstract/abstract18794.shtml

    Jia Yao, Chai Tian-You. Interval cascade intelligent control in vaper-water plate-type heat exchange process. Acta Automatica Sinica, 2016, 42 (1):37-46 http://www.aas.net.cn/CN/abstract/abstract18794.shtml
    [7] Bobál V, Kubalčík M, Dostál P. Identification and self-tuning predictive control of heat exchanger. In: Proceedings of the 2013 International Conference on Process Control. Strbske Ples, UK: IEEE, 2013. 219-224
    [8] Tian H, Wu Z K, Qi X J. Design and implementation of cascade fuzzy controller for secondary pipe network of heat exchange station. International Journal of Control and Automation, 2015, 8 (8):75-86 doi: 10.14257/ijca
    [9] 黄德先, 王京春, 金以慧.过程控制系统.北京:清华大学出版社, 2011.

    Huang De-Xian, Wang Jing-Chun, Jin Yi-Hui. Process Control Systems. Beijing:Tsinghua University Press, 2011.
    [10] 范家璐, 姜艺, 柴天佑.无线网络环境下工业过程运行反馈控制方法.自动化学报, 2016, 42 (8):1166-1174 http://www.aas.net.cn/CN/abstract/abstract18906.shtml

    Fan Jia-Lu, Jiang Yi, Chai Tian-You. Operational feedback control of industrial processes in a wireless network environment. Acta Automatica Sinica, 2016, 42 (8):1166-1174 http://www.aas.net.cn/CN/abstract/abstract18906.shtml
    [11] 何坤, 蔡瑞忠, 郝洪彬, 任丕莲, 李利.热网汽水换热站动态模拟.清华大学学报(自然科学版), 2003, 43 (12):1679-1682 doi: 10.3321/j.issn:1000-0054.2003.12.027

    He Kun, Cai Rui-Zhong, Hao Hong-Bin, Ren Pei-Lian, Li Li. Dynamic modeling of vapor-water heat exchanger. Journal of Tsinghua University (Science and Technology), 2003, 43 (12):1679-1682 doi: 10.3321/j.issn:1000-0054.2003.12.027
    [12] 柴天佑, 张亚军.基于未建模动态补偿的非线性自适应切换控制方法.自动化学报, 2011, 37 (7):773-786 http://www.aas.net.cn/CN/abstract/abstract17475.shtml

    Chai Tian-You, Zhang Ya-Jun. Nonlinear adaptive switching control method based on unmodeled dynamics compensation. Acta Automatica Sinica, 2011, 37 (7):773-786 http://www.aas.net.cn/CN/abstract/abstract17475.shtml
    [13] 郑大钟.线性系统理论.第2版.北京:清华大学出版社, 2002. 213-216

    Zheng Da-Zhong. Linear System Theory (Second edition). Beijing:Tsinghua University Press, 2002. 213-216
    [14] 梅生伟, 申铁龙, 刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社, 2003. 42-44

    Mei Sheng-Wei, Shen Tie-Long, Liu Kang-Zhi. Modern Robust Control Theory and Application. Beijing:Tsinghua University Press, 2003. 42-44
    [15] Oppenheim A V, Willsky A S, Hamid S. Signals and System (Second edition). London:Prentice-Hall, 1997.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2158
  • HTML全文浏览量:  362
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-02
  • 录用日期:  2017-04-21
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回