2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm

Yanhui Xi Hui Peng Hong Mo

席燕辉, 彭辉, 莫红. 基于EM-EKF算法的RBF-AR模型参数估计. 自动化学报, 2017, 43(9): 1636-1643. doi: 10.16383/j.aas.2017.e160216
引用本文: 席燕辉, 彭辉, 莫红. 基于EM-EKF算法的RBF-AR模型参数估计. 自动化学报, 2017, 43(9): 1636-1643. doi: 10.16383/j.aas.2017.e160216
Yanhui Xi, Hui Peng, Hong Mo. Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm. ACTA AUTOMATICA SINICA, 2017, 43(9): 1636-1643. doi: 10.16383/j.aas.2017.e160216
Citation: Yanhui Xi, Hui Peng, Hong Mo. Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm. ACTA AUTOMATICA SINICA, 2017, 43(9): 1636-1643. doi: 10.16383/j.aas.2017.e160216

基于EM-EKF算法的RBF-AR模型参数估计

doi: 10.16383/j.aas.2017.e160216
基金项目: 

the National Natural Science Foundation of China 70921001

the National Natural Science Foundation of China 51425701

Hunan Province Science and Technology Program 2015NK3035

the National Natural Science Foundation of China 71271215

the National Natural Science Foundation of China 61233008

the National Natural Science Foundation of China 51577014

the National Natural Science Foundation of China 51507015

the Natural Science Foundation of Hunan Province 2015JJ3008

the National Natural Science Foundation of China 61773402

the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province 2014ZNDL002

the National Natural Science Foundation of China 61540037

Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm

Funds: 

the National Natural Science Foundation of China 70921001

the National Natural Science Foundation of China 51425701

Hunan Province Science and Technology Program 2015NK3035

the National Natural Science Foundation of China 71271215

the National Natural Science Foundation of China 61233008

the National Natural Science Foundation of China 51577014

the National Natural Science Foundation of China 51507015

the Natural Science Foundation of Hunan Province 2015JJ3008

the National Natural Science Foundation of China 61773402

the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province 2014ZNDL002

the National Natural Science Foundation of China 61540037

More Information
    Author Bio:

    Hui Peng received the Ph.D. degree at the School of Mathematical and Physical Science, the Graduate University for Advanced Studies, Japan, in 2003. He is a Professor at the School of Information Science and Engineering, Central South University. His research interests include predictive control, adaptive control, system modeling and identification, modeling and dynamic asset allocation in financial markets. E-mail: huipeng@mail.csu.edu.cn

    Hong Mo received the Ph.D. degree from Graduate University of Chinese Academy of Sciences in 2004. She is a Professor at the School of Electrical and Information Engineering, Changsha University of Sciences and Technology. Her research interests include linguistic dynamic systems, time-varying universe, and type-2 fuzzy sets. E-mail: mohong198@163.com

    Corresponding author: Yanhui Xi received the Ph.D. degree in control science and engineering from Central South University, China, in 2013. She is an Associate Professor at Changsha University of Science and Technology. Her research interests include system modeling and identification, nonlinear optimization, and traveling identification. Corresponding author of this paper.E-mail: xiyanhui@126.com
  • 摘要: 为了利用EKF(extended Kalman filter)算法对RBF-AR(radial basis function network-based autoregressive)模型进行参数估计,重构了RBF-AR模型的网络结构,将其变换成一种新型的广义径向基函数(radial basis function,RBF)神经网络.与典型三层RBF网络结构相比,该广义RBF网络增加了线性输出加权层.为了克服基于EKF神经网络学习算法由于噪声统计特性未知导致滤波发散或者滤波精度不高的问题,利用EM(expectation maximization)算法对RBF-AR模型噪声协方差矩阵进行估计.同时,通过EKF滤波实时估计RBF-AR模型参数(系统状态),EKF平滑过程得到了更加准确的期望估计.仿真结果显示,该方法用在此变形的RBF-AR模型结构中是有效的,特别在信噪比低的情况下,估计效果比SNPOM(structured nonlinear parameter optimization method)方法好,而且还能估计出噪声方差.F检验显示了两方法估计得到的标准偏差有显著性差异.
  • Fig.  1  The schematic of the RBF-AR model.

    Fig.  2  The original Mackey-Glass time series.

    Fig.  3  The convergence process of the Log-likelihood, the measurement and process noise variance.

    Fig.  4  The Mackey-Glass chaotic time series corrupted by additive white noise.

    Fig.  5  The convergence process of the Log-likelihood, the measurement and process noise variance.

    Fig.  6  The convergence process of the Log-likelihood, the measurement and process noise variance.

    Table  Ⅰ  COMPARISON RESULTS FOR MACKEY-GLASS TIME SERIES

    Method MSE (Training) MSE (Testing) $R$
    SNPOM 1.0800E-7 1.2600E-7 unknown
    EKF 1.9560E-7 2.1786E-7 0.002 (given)
    EKF 1.2559E-7 1.9793E-7 0.0002 (given)
    EM-EKF 7.1765E-8 1.2008E-7 1.8146E-7
    下载: 导出CSV

    Table  Ⅱ  COMPARISON RESULTS FOR MACKEY-GLASS TIME SERIES CORRUPTES BY ADDITIVE WHITE NOISE

    Noise variance Method MSE (Training) MSE (Testing) R
    0.25 SNPOM 0.26606 0.28120 unknown
    EKF 0.26577 0.28082 0.2 (given)
    EKF 0.27343 0.28825 0.1 (given)
    EM-EKF 0.25750 0.27825 0.25950
    1 SNPOM 0.97452 1.1644 unknown
    EKF 0.97215 1.1512 0.8 (given)
    EKF 0.98262 1.1785 0.6 (given)
    EM-EKF 0.96590 1.13907 1.0589
    下载: 导出CSV

    Table  Ⅲ  THE RESULTS OF STATISTICAL F TEST AT LEVEL 0.05

    Case $F_{\alpha=0.05}$ $F$ Results
    Case 1 (Training) 1.16 1.4642 Reject; Difference
    Case 1 (Testing) 1.16 1.0105 No reject; No difference
    Case 2 (Training) 1.16 14.1212 Reject; Significant difference
    Case 2 (Testing) 1.16 9.2984 Reject; Significant difference
    Case 3 (Training) 1.16 37.8297 Reject; Significant difference
    Case 3 (Testing) 1.16 15.5751 Reject; Significant difference
    下载: 导出CSV

    Table  Ⅳ  THE COMPUTATION TIME OF DIFFERENT METHODS (S)

    Method Time
    SNPOM 10.690
    EKF 0.40572
    EM-EKF 30.766
    下载: 导出CSV
  • [1] Z. Y. Shi, Y. Tamura, and T. Ozaki, "Nonlinear time series modelling with the radial basis function-based state-dependent autoregressive model, "Int. J. Syst. Sci. , vol. 30, no. 7, pp. 717-727, Jul. 1999. doi: 10.1080/002077299292038
    [2] H. Peng, T. Ozaki, V. Haggan-Ozaki, and Y. Toyoda, "A parameter optimization method for radial basis function type models, "IEEE Trans. Neural Netw. , vol. 14, no. 2, pp. 432-438, Mar. 2003. http://europepmc.org/abstract/MED/18238025
    [3] M. Gan, H. Peng, X. Y. Peng, X. H. Chen, and G. Inoussa, "A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling, "Inform. Sci. , vol. 180, no. 22, pp. 4370-4380, Nov. 2010. http://www.sciencedirect.com/science/article/pii/S0020025510003300
    [4] M. Gan, C. L. P. Chen, H. X. Li, and L. Chen, "Gradient radial basis function based varying-coefficient Autoregressive model for nonlinear and nonstationary time series, "IEEE Signal Proc. Lett. , vol. 22, no. 7, pp. 809-812, Jul. 2015. http://ieeexplore.ieee.org/document/6953131/
    [5] H. Peng, J. Wu, G. Inoussa, Q. L. Deng, and K. Nakano, "Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model, "Control Eng. Pract. , vol. 17, no. 1, pp. 59-66, Jan. 2009. http://www.sciencedirect.com/science/article/pii/S0967066108000993
    [6] H. Peng, G. Kitagawa, J. Wu, and K. Ohtsu, "Multivariable RBF-ARX model-based robust MPC approach and application to thermal power plant, "Appl. Math. Model. , vol. 35, no. 7, pp. 3541-3551, Jul. 2011. http://www.sciencedirect.com/science/article/pii/S0307904X11000151
    [7] M. Gan, H. Peng, and L. Y. Chen, "A global-local optimization approach to parameter estimation of RBF-type models, "Inform. Sci. , vol. 197, pp. 144-160, Aug. 2012. http://www.sciencedirect.com/science/article/pii/S0020025512000679
    [8] M. Gan, H. X. Li, and H. Peng, "A variable projection approach for efficient estimation of RBF-ARX model, "IEEE Trans. Cybern. , vol. 45, no. 3, pp. 462-471, Mar. 2015. http://europepmc.org/abstract/med/24988599
    [9] H. K. Wei and S. I. Amari, "Dynamics of learning near singularities in radial basis function networks, "Neural Netw. , vol. 21, no. 7, pp. 989-1005, Sep. 2008. http://dl.acm.org/citation.cfm?id=1411874
    [10] J. S. Kim and S. Jung, "Implementation of the RBF neural chip with the back-propagation algorithm for on-line learning, "Appl. Soft Comput. , vol. 29, pp. 233-244, Apr. 2015. http://www.sciencedirect.com/science/article/pii/S1568494614006620
    [11] F. P. Härter and H. F. de Campos Velho, "New approach to applying neural network in nonlinear dynamic model, "Appl. Math. Model. , vol. 32, no. 12, pp. 2621-2633, Dec. 2008. http://www.sciencedirect.com/science/article/pii/S0307904X07002296
    [12] H. Z. Yang, J. Li, and F. Ding, "A neural network learning algorithm of chemical process modeling based on the extended Kalman filter, "Neurocomputing, vol. 70, no. 4-6, pp. 625-632, Jan. 2007. http://dl.acm.org/citation.cfm?id=1224059&CFID=448466066&CFTOKEN=67010250
    [13] K. Salahshoor, S. Zakeri, and M. H. Sefat, "Stabilization of gas-lift oil wells by a nonlinear model predictive control scheme based on adaptive neural network models, "Eng. Appl. Artif. Intel. , vol. 26, no. 8, pp. 1902-1910, Sep. 2013. http://dl.acm.org/citation.cfm?id=2508322
    [14] N. Y. Zeng, Z. D. Wang, Y. R. Li, M. Du, and X. H. Liu, "Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering, "IEEE Trans. Biomed. Eng. , vol. 58, no. 7, pp. 1959-1966, Jul. 2011. http://www.ncbi.nlm.nih.gov/pubmed/21245000
    [15] J. F. G. de Freitas, M. Niranjan, and A. H. Gee, "Hierarchical Bayesian models for regularization in sequential learning, "Neural Comput. , vol. 12, no. 4, pp. 933-953, Apr. 2000. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6789428
    [16] Y. S. T. Hong, "Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling, "J. Hydrol. , vol. 468-469, pp. 11-21, Oct. 2012. http://www.sciencedirect.com/science/article/pii/S0022169412006658
    [17] Y. H. Xi, H. Peng, and X. H. Chen, "A sequential learning algorithm based on adaptive particle filtering for RBF networks, "Neural Comput. Appl. , vol. 25, no. 3-4, pp. 807-814, Sep. 2014. http://dl.acm.org/citation.cfm?id=2662643
    [18] N. Y. Zeng, Z. D. Wang, Y. R. Li, M. Du, and X. H. Liu, "A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models, "IEEE/ACM Trans. Comput. Biol. Bioinform. , vol. 9, no. 2, pp. 321-329, Mar. -Apr. 2012.
    [19] N. Y. Zeng, Z. D. Wang, Y. R. Li, M. Du, and X. H. Liu, "Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach, "IEEE Trans. Nanotechnol. , vol. 11, no. 2, pp. 321-327, Mar. 2012. http://ieeexplore.ieee.org/abstract/document/6081979/
    [20] M. Hürzeler and H. R. Künsch, "Approximating and maximising the likelihood for a general state-space model, "in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer, 2001, pp. 159-175. http://www.ams.org/mathscinet-getitem?mr=1847791
    [21] N. Y. Zeng, Z. D. Wang, Y. R. Li, M. Du, J. Cao, and X. H. Liu, "Time series modeling of nano-gold immunochromatographic assay via expectation maximization algorithm, "IEEE Trans. Biomed. Eng. , vol. 60, no. 12, pp. 3418-3424, Dec. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23629840
    [22] M. Lázaro, I. Santamaría, and C. Pantaleón, "A new EM-based training algorithm for RBF networks, "Neural Netw. , vol. 16, no. 1, pp. 69-77, Jan. 2003. http://dl.acm.org/citation.cfm?id=776140
    [23] C. Constantinopoulos and A. Likas, "Semi-supervised and active learning with the probabilistic RBF classifier, "Neurocomputing, vol. 71, no. 13-15, pp. 2489-2498, Aug. 2008. http://www.sciencedirect.com/science/article/pii/S0925231208002117
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1596
  • HTML全文浏览量:  363
  • PDF下载量:  2127
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 录用日期:  2016-12-20
  • 刊出日期:  2017-09-20

目录

    /

    返回文章
    返回