2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Bitmap的油水井采注优化实时推理引擎

刘阳 张天石 李世超 佟星 曾鹏 于海斌

刘阳, 张天石, 李世超, 佟星, 曾鹏, 于海斌. 基于Bitmap的油水井采注优化实时推理引擎. 自动化学报, 2017, 43(6): 1007-1016. doi: 10.16383/j.aas.2017.c170132
引用本文: 刘阳, 张天石, 李世超, 佟星, 曾鹏, 于海斌. 基于Bitmap的油水井采注优化实时推理引擎. 自动化学报, 2017, 43(6): 1007-1016. doi: 10.16383/j.aas.2017.c170132
LIU Yang, ZHANG Tian-Shi, LI Shi-Chao, TONG Xing, ZENG Peng, YU Hai-Bin. A Real-time Reasoning Engine for Injection-production Optimization of Water and Oil Wells on Account of Bitmap. ACTA AUTOMATICA SINICA, 2017, 43(6): 1007-1016. doi: 10.16383/j.aas.2017.c170132
Citation: LIU Yang, ZHANG Tian-Shi, LI Shi-Chao, TONG Xing, ZENG Peng, YU Hai-Bin. A Real-time Reasoning Engine for Injection-production Optimization of Water and Oil Wells on Account of Bitmap. ACTA AUTOMATICA SINICA, 2017, 43(6): 1007-1016. doi: 10.16383/j.aas.2017.c170132

基于Bitmap的油水井采注优化实时推理引擎

doi: 10.16383/j.aas.2017.c170132
基金项目: 

国家自然科学基金 61533015

详细信息
    作者简介:

    刘阳   中国科学院沈阳自动化研究所副研究员.2011年获得东北大学计算机应用技术专业博士学位.主要研究方向为工业物联网数据处理、语义数据处理及智能制造.E-mail:liuy@sia.cn

    张天石   中国科学院沈阳自动化研究所助理研究员.2013年获得北京邮电大学自动化学院硕士学位.主要研究方向为智能优化算法以及工业物联网本体设计.E-mail:zhangtianshi@sia.cn

    李世超   中国科学院沈阳自动化研究所助理研究员.2014年获得东北大学信息学院硕士学位.主要研究方向为油田优化开采以及智慧油田应用.E-mail:lishichao@sia.cn

    佟星   中国科学院沈阳自动化研究所助理研究员.2012年获得哈尔滨工业大学计算机学院硕士学位.主要研究方向为自然语言处理以及工业物联网本体设计.E-mail:tongxing@sia.cn

    于海斌   中国科学院沈阳自动化研究所研究员.1997年获得东北大学控制理论与控制工程专业博士学位.主要研究方向为自动化控制系统, 先进制造技术和智能电网的基础与应用研究.E-mail:yhb@sia.cn

    通讯作者:

    曾鹏   中国科学院沈阳自动化研究所研究员.2005年中国科学院大学机械电子工程专业博士学位.主要研究方向为工业无线传感器网络, 智能电网以及需求响应.E-mail:zp@sia.cn

A Real-time Reasoning Engine for Injection-production Optimization of Water and Oil Wells on Account of Bitmap

Funds: 

National Natural Science Foundation of China 61533015

More Information
    Author Bio:

      Associate professor at Shenyang Institute of Automation Chinese Academy of Sciences. She received her Ph. D. degree in computer application technology from Northeastern University in 2011. Her research interest covers industrial internet of things data processing, semantic data processing and intelligent manufacturing

      Assistant professor at Shenyang Institute of Automation Chinese Academy of Sciences. He received his master degree from School of Automation, Beijing University of Post and Communication in 2013. His research interest covers intelligence optimization algorithm and ontology design in industrial things

      Assistant professor at Shenyang Institute of Automation, Chinese Academy of Sciences. He received his master degree from the School of Information, Northeastern University in 2014. His research interest covers optimized exploitation of oilfleld and application of intelligent oilfleld

      Assistant professor at Shenyang Institute of Automation, Chinese Academy of Sciences. He received his master degree from the School of Computer, Harbin Institute of Technology in 2012. His research interest covers natural language processing and ontology design in industrial things

      Professor at Shenyang Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree in control theory and control engineering from Northeastern University in 1997. His research interest covers basic and applied research in the areas of automation control systems, advanced manufacturing techniques and smart grids

    Corresponding author: ZENG Peng   Professor at Shenyang Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree in mechatronic engineering from Graduate School of the Chinese Academy of Sciences in 2005. His research interest covers wireless sensor networks for industrial automation, smart grids, and demand response. Corresponding author of this paper
  • 摘要: 针对油田油水井采注优化业务中,油水井数据量大、地层结构复杂以及人类经验多的特点,分析了传统推理方法在油田采注实时优化处理过程中的不足,采用事件处理思想,提出了一种基于Bitmap事件编码与匹配机制的推理引擎,有效地实现了对无效事件的过滤并提升了事件与规则的匹配效率.在油田实际数据试验平台上对该方法进行了验证并与RETE算法、LFA(Linear forward-chaining)算法的性能对比,结果验证了本文方法在实时推理能力上的有效性.
  • 图  1  产生式推理引擎示意图

    Fig.  1  The sketch map of production rule reasoning

    图  2  油田实时推理系统

    Fig.  2  Real-time reasoning system in oilfleld

    图  3  实时推理引擎架构

    Fig.  3  The architecture of real-time reasoning engine

    图  4  原子规则树

    Fig.  4  Atomic rule trees

    图  5  β网络

    Fig.  5  β network

    图  6  原子条件筛选流程图

    Fig.  6  The flow chart for atomic condition flltering

    图  7  油水井采注协同优化流程图

    Fig.  7  The co-optimization flow chart for injection-production in oil and water wells

    图  8  不同到达事件情况下性能对比图

    Fig.  8  The performance comparison with difierent numbers of arrival events

    图  9  不同原子条件下性能对比图

    Fig.  9  The performance comparison with difierent numbers of atomic conditions

  • [1] O'Neil P E. Model 204 architecture and performance. In: Proceedings of the 2nd International Workshop on High Performance Transaction Systems. London, UK: Springer, 1987. 40-59
    [2] O'Neil P E, Quass D. Improved query performance with variant indexes. ACM SIGMOD Record, 1997, 26(2): 38-49 doi: 10.1145/253262
    [3] van Schaik S J, de Moor O. A memory efficient reachability data structure through bit vector compression. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. Athens, Greece: ACM, 2011. 913-924
    [4] Antoshenkov G. Byte-aligned bitmap compression. In: Proceedings of the 5th Data Compression Conference. Snowbird, UT, USA: IEEE, 1995. 476
    [5] Wu K S, Otoo E J, Shoshani A. Optimizing bitmap indices with efficient compression. ACM Transactions on Database Systems (TODS), 2006, 31(1): 1-38 doi: 10.1145/1132863
    [6] Deliége F, Pedersen T B. Position list word aligned hybrid: optimizing space and performance for compressed bitmaps. In: Proceedings of the 13th International Conference on Extending Database Technology. Lausanne, Switzerland: ACM, 2010. 228-239
    [7] Fusco F, Stoecklin M P, Vlachos M. NET-FLi: on-the-fly compression, archiving and indexing of streaming network traffic. Proceedings of the VLDB Endowment, 2010, 3(1-2): 1382-1393 doi: 10.14778/1920841
    [8] Kim S, Lee J, Satti S R, Moon B. SBH: super byte-aligned hybrid bitmap compression. Information Systems, 2016, 62: 155-168 doi: 10.1016/j.is.2016.07.004
    [9] Wen Y H, Chen Z, Ma G, Cao J W, Zheng W X, Peng G D, Li S W, Huang W L. SECOMPAX: a bitmap index compression algorithm. In: Proceedings of the 23rd International Conference on Computer Communication and Networks (ICCCN). Shanghai, China: IEEE, 2014. 1-7
    [10] Wen Y H, Wang H, Chen Z, Cao J W, Peng G D, Huang W L, Hu Z W, Zhou J, Guo J H. MASC: a bitmap index encoding algorithm for fast data retrieval. In: Proceedings of the 2016 IEEE International Conference on Communications (ICC). Kuala Lumpur, Malaysia: IEEE, 2016. 1-6
    [11] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1): 1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml

    Wang Fei-Yue. Software-defined systems and knowledge automation: a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1): 1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml
    [12] 武丹凤, 曾广平, 闫京颖.支持演化规则引擎的rete算法研究.计算机应用研究, 2013, 30(6): 1747-1750 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201306039.htm

    Wu Dan-Feng, Zeng Guang-Ping, Yan Jing-Ying. Research on rete algorithm supporting evolution rules engine. Application Research of Computers, 2013, 30(6): 1747-1750 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201306039.htm
    [13] Forgy C L. Rete: a fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence, 1982, 19(1): 17-37 doi: 10.1016/0004-3702(82)90020-0
    [14] Hong Y G, Kim H J, Park H D, Kim D H. Adaptive GTS allocation scheme to support QoS and multiple devices in 802.15.4. In: Proceedings of the 11th International Conference on Advanced Communication Technology. Phoenix Park, Ireland: IEEE, 2009. 1697-1702
    [15] 徐久强, 卢锁, 刘大鹏, 孔求实.基于改进Rete算法的RFID复合事件检测方法.东北大学学报(自然科学版), 2012, 33(6): 806-809, 814 http://cdmd.cnki.com.cn/Article/CDMD-10145-1015529793.htm

    Xu Jiu-Qiang, Lu Suo, Liu Da-Peng, Kong Qiu-Shi. Research on RFID composite events detection based on improved rete algorithm. Journal of Northeastern University (Natural Science), 2012, 33(6): 806-809, 814 http://cdmd.cnki.com.cn/Article/CDMD-10145-1015529793.htm
    [16] Kawakami T, Yoshihisa T, Yanagisawa Y, Tsukamoto M. A rule processing scheme using the rete algorithm in grid topology networks. In: Proceedings of the 29th International Conference on Advanced Information Networking and Applications (AINA). Gwangju, Korea: IEEE, 2015. 674-679
    [17] Kawakami T, Yoshihisa T, Tsukamoto M. A control method of ubiquitous computers using the RETE algorithm in grid topology network. In: Proceedings of the 3rd Global Conference on Consumer Electronics (GCCE). Tokyo, Japan: IEEE, 2014. 551-552
    [18] Kawakami T, Yoshihisa T, Fujita N, Tsukamoto M. A rule-based home energy management system using the RETE algorithm. In: Proceedings of the 2nd Global Conference on Consumer Electronics (GCCE). Tokyo, Japan: IEEE, 2013. 162-163
    [19] Kawakami T, Fujita N, Yoshihisa T, Tsukamoto M. An evaluation and implementation of rule-based home energy management system using the RETE algorithm. The Scientific World Journal, 2014, 2014: Article No. 591478
    [20] Pallavi M S, Vaisakh P, Reshna N P. Implementation of rete algorithm using course finder system. In: Proceedings of the 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE). Ernakulam, India: IEEE, 2016. 96-100
    [21] Wu X D. LFA: a linear forward-chaining algorithm for AI production systems. Expert Systems, 1993, 10(4): 237-242 doi: 10.1111/exsy.1993.10.issue-4
    [22] 冯建周, 宋沙沙, 孔令富.物联网语义关联和决策方法的研究.自动化学报, 2016, 42(11): 1691-1701 http://www.aas.net.cn/CN/abstract/abstract18958.shtml

    Feng Jian-Zhou, Song Sha-Sha, Kong Ling-Fu. Research on semantic association and decision method of the internet of things. Acta Automatica Sinica, 2016, 42(11): 1691-1701 http://www.aas.net.cn/CN/abstract/abstract18958.shtml
    [23] 朱秀莉, 李龙, 李盼池.基于T-S推理网络的油田开发指标预测方法.计算机应用研究, 2011, 28(8): 2991-2993 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201108054.htm

    Zhu Xiu-Li, Li Long, Li Pan-Chi. Forecasting methods of oil field development indexes based on T-S reasoning networks. Application Research of Computers, 2011, 28(8): 2991-2993 http://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201108054.htm
  • 加载中
图(9)
计量
  • 文章访问数:  1981
  • HTML全文浏览量:  318
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10
  • 录用日期:  2017-05-04
  • 刊出日期:  2017-06-20

目录

    /

    返回文章
    返回