2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矩阵填充和物品可预测性的协同过滤算法

潘涛涛 文峰 刘勤让

潘涛涛, 文峰, 刘勤让. 基于矩阵填充和物品可预测性的协同过滤算法. 自动化学报, 2017, 43(9): 1597-1606. doi: 10.16383/j.aas.2017.c160644
引用本文: 潘涛涛, 文峰, 刘勤让. 基于矩阵填充和物品可预测性的协同过滤算法. 自动化学报, 2017, 43(9): 1597-1606. doi: 10.16383/j.aas.2017.c160644
PAN Tao-Tao, WEN Feng, LIU Qin-Rang. Collaborative Filtering Recommendation Algorithm Based on Rating Matrix Filling and Item Predictability. ACTA AUTOMATICA SINICA, 2017, 43(9): 1597-1606. doi: 10.16383/j.aas.2017.c160644
Citation: PAN Tao-Tao, WEN Feng, LIU Qin-Rang. Collaborative Filtering Recommendation Algorithm Based on Rating Matrix Filling and Item Predictability. ACTA AUTOMATICA SINICA, 2017, 43(9): 1597-1606. doi: 10.16383/j.aas.2017.c160644

基于矩阵填充和物品可预测性的协同过滤算法

doi: 10.16383/j.aas.2017.c160644
基金项目: 

国家自然科学基金 61572520

国家高技术研究发展计划(863计划) 2014AA01A

详细信息
    作者简介:

    文峰:文锋 江南计算技术研究所高级工程师.主要研究方向为计算机应用.E-mail:wensinliu@163.com

    刘勤让 国家数字交换系统工程技术研究中心研究员.主要研究方向为片上网络设计. E-mail: qinrangliu@sina.com

    通讯作者:

    潘涛涛 国家数字交换系统工程技术研究中心硕士生.主要研究方向为人工智能和数据挖掘.本文通信作者.E-mail: pan_taotao@126.com

Collaborative Filtering Recommendation Algorithm Based on Rating Matrix Filling and Item Predictability

Funds: 

National Natural Science Foundation of China 61572520

National High Technology Research and Development Program (863 Program) 2014AA01A

More Information
    Author Bio:

    Senior engineer at the Jiangnan Computing Technology Research Institute. His main research interest is computer application

    Researcher at the China National Digital Switching System Engineering and Technological R & D Center. His main research interest is network-on-chip

    Corresponding author: PAN Tao-Tao Master student at the China National Digital Switching System Engineering and Technological R & D Center. His research interest covers artificial intelligence and data mining. Corresponding author of this paper
  • 摘要: 针对传统矩阵填充算法忽略了预测评分与真实评分之间的可信度差异和传统Top-N方法推荐精度低等问题,提出了一种改进的协同过滤算法.该算法首先利用置信系数C区分评分值之间的可信度;然后提出物品可预测性的概念,综合物品的预测评分与物品的可预测性进行物品推荐并将其转化为0-1背包问题,从而筛选出最优化的推荐列表.实验结果表明:该算法能有效缓解稀疏性的影响,提高推荐性能,并且算法具有良好的可扩展性.
    1)  本文责任编委  周涛
  • 图  1  物品层次划分

    Fig.  1  Hierarchy of item

    图  2  $C$ 与MAE的关系

    Fig.  2  The relationship between $C$ and MAE

    图  3  $Q$ 与precision的关系

    Fig.  3  The relationship between $Q$ and precision

    图  4  Movielens_100k中 $k$ 与MAE的关系

    Fig.  4  The relationship between $k$ and MAE in Movielens_100k

    图  5  Movielens_100k中 $k$ 与precision的关系

    Fig.  5  The relationship between $k$ and precision in Movielens_100k

    图  6  Movielens_100k中 $k$ 与Coverage的关系

    Fig.  6  The relationship between $k$ and Coverage in Movielens_100k

    图  7  Movielens_100k中稀疏度与MAE的关系

    Fig.  7  The relationship between sparsity and MAE in Movielens_100k

    图  8  基于物品可预测性算法可扩展性对比

    Fig.  8  Scalability comparison of algorithms

    图  9  三种算法的运行时间对比

    Fig.  9  Comparing the running time of the three algorithms

  • [1] Chen Y, Tsai W T. Service-Oriented Computing and Web Software Integration: From Principles to Development (Fourth edition). Dubuque, IA, USA: Kendall Hunt Publishing, 2014. http://dl.acm.org/citation.cfm?id=2559268
    [2] Yu F, Zeng A, Gillard S, Medo M. Network-based recommendation algorithms: a review. Physica A: Statistical Mechanics and its Applications, 2016, 452: 192-208 doi: 10.1016/j.physa.2016.02.021
    [3] 孙光福, 吴乐, 刘淇, 朱琛, 陈恩红.基于时序行为的协同过滤推荐算法.软件学报, 2013, 24(11): 2721-2733 http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299735.htm

    Sun Guang-Fu, Wu Le, Liu Qi, Zhu Chen, Chen En-Hong. Recommendations based on collaborative filtering by exploiting sequential behaviors. Journal of Software, 2013, 24(11): 2721-2733 http://cdmd.cnki.com.cn/Article/CDMD-10358-1014299735.htm
    [4] Hernando A, Bobadilla J, Ortega F. A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model. Knowledge-Based Systems, 2016, 97: 188-202 doi: 10.1016/j.knosys.2015.12.018
    [5] Lv G, Hu C L, Chen S B. Research on recommender system based on ontology and genetic algorithm. Neurocomputing, 2016, 187: 92-97 doi: 10.1016/j.neucom.2015.09.113
    [6] Mashal I, Alsaryrah O, Chung T Y. Performance evaluation of recommendation algorithms on internet of things services. Physica A: Statistical Mechanics and its Applications, 2016, 451: 646-656 doi: 10.1016/j.physa.2016.01.051
    [7] Zhang J, Peng Q K, Sun S Q, Liu C. Collaborative filtering recommendation algorithm based on user preference derived from item domain features. Physica A: Statistical Mechanics and its Applications, 2014, 396: 66-76 doi: 10.1016/j.physa.2013.11.013
    [8] Kim H N, Ji A T, Ha I, Jo G S. Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation. Electronic Commerce Research and Applications, 2010, 9(1): 73-83 doi: 10.1016/j.elerap.2009.08.004
    [9] 李聪, 骆志刚.基于数据非随机缺失机制的推荐系统托攻击探测.自动化学报, 2013, 39(10): 1681-1690 http://www.aas.net.cn/CN/abstract/abstract18205.shtml

    Li Cong, Luo Zhi-Gang. Detecting shilling attacks in recommender systems based on non-random-missing mechanism. Acta Automatica Sinica, 2013, 39(10): 1681-1690 http://www.aas.net.cn/CN/abstract/abstract18205.shtml
    [10] 冷亚军, 梁昌勇, 丁勇, 陆青.协同过滤中一种有效的最近邻选择方法.模式识别与人工智能, 2013, 26(10): 968-974 doi: 10.3969/j.issn.1003-6059.2013.10.009

    Leng Ya-Jun, Liang Chang-Yong, Ding Yong, Lu Qing. Method of neighborhood formation in collaborative filtering. Pattern Recognition and Artificial Intelligence, 2013, 26(10): 968-974 doi: 10.3969/j.issn.1003-6059.2013.10.009
    [11] 邓爱林, 朱扬勇, 施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报, 2003, 14(9): 1621-1628 http://cdmd.cnki.com.cn/Article/CDMD-10663-1016757098.htm

    Deng Ai-Lin, Zhu Yang-Yong, Shi Bo-Le. A collaborative filtering recommendation algorithm based on item rating prediction. Journal of Software, 2013, 14(9): 1621-1628 http://cdmd.cnki.com.cn/Article/CDMD-10663-1016757098.htm
    [12] Xu R Z, Wang S Q, Zheng X W, Chen Y N. Distributed collaborative filtering with singular ratings for large scale recommendation. Journal of Systems and Software, 2014, 95: 231-241 doi: 10.1016/j.jss.2014.04.045
    [13] 陈刚, 刘发升.基于BP神经网络的数据挖掘方法.计算机与现代化, 2006, (10): 20-22 doi: 10.3969/j.issn.1006-2475.2006.10.007

    Chen Gang, Liu Fa-Sheng. Method for data mining based on BP neural network. Computer and Modernization, 2006, (10): 20-22 doi: 10.3969/j.issn.1006-2475.2006.10.007
    [14] Jang S, Yang J, Kim D K. Minimum MSE design for multiuser MIMO relay. IEEE Communications Letters, 2010, 14(9): 812-814 doi: 10.1109/LCOMM.2010.072610.100583
    [15] Eldar Y C. Universal weighted MSE improvement of the least-squares estimator. IEEE Transactions on Signal Processing, 2008, 56(5): 1788-1800 doi: 10.1109/TSP.2007.913158
    [16] Kaleli C. An entropy-based neighbor selection approach for collaborative filtering. Knowledge-Based Systems, 2014, 56: 273-280 doi: 10.1016/j.knosys.2013.11.020
    [17] Zou D X, Gao L Q, Li S, Wu J H. Solving 0-1 knapsack problem by a novel global harmony search algorithm. Applied Soft Computing, 2011, 11(2): 1556-1564 doi: 10.1016/j.asoc.2010.07.019
    [18] 高建煌, 陈恩红, 刘淇.基于用户兴趣传播的协同过滤方法.电子技术, 2010, 47(6): 1-4 http://www.cnki.com.cn/Article/CJFDTOTAL-DZJS201006003.htm

    Gao Jian-Huang, Chen En-Hong, Liu Qi. User interests transmission based collaborative filtering approach. Electronic Technology, 2010, 47(6): 1-4 http://www.cnki.com.cn/Article/CJFDTOTAL-DZJS201006003.htm
    [19] Javari A, Gharibshah J, Jalili M. Recommender systems based on collaborative filtering and resource allocation. Social Network Analysis and Mining, 2014, 4: 234 doi: 10.1007/s13278-014-0234-0
    [20] Hu Y C. Recommendation using neighborhood methods with preference-relation-based similarity. Information Sciences, 2014, 284: 18-30 doi: 10.1016/j.ins.2014.06.043
    [21] Choi K, Suh Y. A new similarity function for selecting neighbors for each target item in collaborative filtering. Knowledge-Based Systems, 2013, 37: 146-153 doi: 10.1016/j.knosys.2012.07.019
    [22] 朱郁筱, 吕琳媛.推荐系统评价指标综述.电子科技大学学报, 2012, 41(2): 163-175 http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201202003.htm

    Zhu Yu-Xiao, Lv Lin-Yuan. Evaluation metrics for recommender systems. Journal of University of Electronic Science and Technology of China, 2012, 41(2): 163-175 http://www.cnki.com.cn/Article/CJFDTOTAL-DKDX201202003.htm
  • 加载中
图(9)
计量
  • 文章访问数:  2103
  • HTML全文浏览量:  401
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-08
  • 录用日期:  2017-01-16
  • 刊出日期:  2017-09-20

目录

    /

    返回文章
    返回