| [1] | Mohaqeqi M, Kargahi M, Dehghan M. Adaptive scheduling of real-time systems cosupplied by renewable and nonrenewable energy sources. ACM Transactions on Embedded Computing Systems (TECS), 2013, 13(1s): Article No.36 | 
		
				| [2] | Yao W, Jiang L, Fang J K, Wen J Y, Cheng S J. Decentralized nonlinear optimal predictive excitation control for multi-machine power systems. International Journal of Electrical Power & Energy Systems, 2014, 55: 620-627 | 
		
				| [3] | Qi G Y, Chen Z Q, Yuan Z Z. Adaptive high order differential feedback control for affine nonlinear system. Chaos, Solitons & Fractals, 2008, 37(1): 308-315 | 
		
				| [4] | Khan Z H, Gu I Y H. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling. IEEE Transactions on Cybernetics, 2013, 43(6): 2005-2019 | 
		
				| [5] | Ramos J I. Linearization techniques for singular initial-value problems of ordinary differential equations. Applied Mathematics and Computation, 2005, 161(2): 525-542 | 
		
				| [6] | Odibat Ζ Μ, Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 27-34 | 
		
				| [7] | Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, 2012. | 
		
				| [8] | Duan J S, Rach R, Baleanu D, Wazwaz A M. A review of the Adomian decomposition method and its applications to fractional differential equations. Communications in Fractional Calculus, 2012, 3(2): 73-99 | 
		
				| [9] | Mall S, Chakraverty S. Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev neural network method. Neurocomputing, 2015, 149: 975-982 | 
		
				| [10] | Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667(侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望. 自动化学报, 2009, 35(6): 650-667) | 
		
				| [11] | Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300 | 
		
				| [12] | Zhang G S, Wang S W, Wang Y M, Liu W Q. LS-SVM approximate solution for affine nonlinear systems with partially unknown functions. Journal of Industrial and Management Optimization, 2014, 10(2): 621-636 | 
		
				| [13] | Yan Wei-Wu, Chang Jun-Lin, Shao Hui-He. Least square SVM regression method based on sliding time window and its simulation. Journal of Shanghai Jiaotong University, 2004, 38(4): 524-526, 532(阎威武, 常俊林, 邵惠鹤. 基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真. 上海交通大学学报, 2004, 38(4): 524-526, 532) | 
		
				| [14] | Zhou Xin-Ran, Teng Zhao-Sheng. An online sparse LSSVM and its application in system modeling. Journal of Hunan University (Natural Sciences), 2010, 37(4): 37-41(周欣然, 滕召胜. 一种在线稀疏LSSVM及其在系统建模中的应用. 湖南大学学报(自然科学版), 2010, 37(4): 37-41) | 
		
				| [15] | Cai Yan-Ning, Hu Chang-Hua. Dynamic non-bias LS-SVM learning algorithm based on Cholesky factorization. Control and Decision, 2008, 32(12): 1363-1367(蔡艳宁, 胡昌华. 一种基于Cholesky分解的动态无偏LS-SVM学习算法. 控制与决策, 2008, 32(12): 1363-1367) | 
		
				| [16] | Vapnik V. The Nature of Statistical Learning Theory (2nd edition). New York: Springer Science & Business Media, 2000. | 
		
				| [17] | Lázaro M, Santamaría I, Pérez-Cruz F, Artés-Rodríguez A. Support vector regression for the simultaneous learning of a multivariate function and its derivatives. Neurocomputing, 2005, 69(1-3): 42-61 | 
		
				| [18] | Mehrkanoon S, Falck T, Suykens J A K. Approximate solutions to ordinary differential equations using least squares support vector machines. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1356-1367 | 
		
				| [19] | Cawley G C, Talbot N L C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 2004, 17(10): 1467-1475 | 
		
				| [20] | El-Tawil M A, Bahnasawi A A, Abdel-Naby A. Solving Riccati differential equation using Adomian's decomposition method. Applied Mathematics and Computation, 2004, 157(2): 503-514 | 
		
				| [21] | Lagaris I E, Likas A, Fotiadis D I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000 |