2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种仿生物视觉感知的视频轮廓检测方法

谢昭 童昊浩 孙永宣 吴克伟

谢昭, 童昊浩, 孙永宣, 吴克伟. 一种仿生物视觉感知的视频轮廓检测方法. 自动化学报, 2015, 41(10): 1814-1824. doi: 10.16383/j.aas.2015.c150018
引用本文: 谢昭, 童昊浩, 孙永宣, 吴克伟. 一种仿生物视觉感知的视频轮廓检测方法. 自动化学报, 2015, 41(10): 1814-1824. doi: 10.16383/j.aas.2015.c150018
XIE Zhao, TONG Hao-Hao, SUN Yong-Xuan, WU Ke-Wei. Dynamic Contour Detection Inspired by Biological Visual Perception. ACTA AUTOMATICA SINICA, 2015, 41(10): 1814-1824. doi: 10.16383/j.aas.2015.c150018
Citation: XIE Zhao, TONG Hao-Hao, SUN Yong-Xuan, WU Ke-Wei. Dynamic Contour Detection Inspired by Biological Visual Perception. ACTA AUTOMATICA SINICA, 2015, 41(10): 1814-1824. doi: 10.16383/j.aas.2015.c150018

一种仿生物视觉感知的视频轮廓检测方法

doi: 10.16383/j.aas.2015.c150018
基金项目: 

国家自然科学基金 (61273237, 61503111)资助

详细信息
    作者简介:

    童昊浩 合肥工业大学计算机与信息学 院硕士研究生. 2012 年获得合肥工业大 学学士学位. 主要研究方向为图像与视 频分析处理. E-mail: h1xiaozi12345@gmail.com

    通讯作者:

    谢昭 合肥工业大学计算机与信息学 院副研究员. 2007 年获得合肥工业大学 博士学位. 主要研究方向为图像理解, 模 式识别, 人工智能. 本文通信作者. E-mail: xiezhao@hfut.edu.cn

Dynamic Contour Detection Inspired by Biological Visual Perception

Funds: 

Supported by National Natural Science Foundation of China (61273237, 61503111)

  • 摘要: 消除背景的局部边缘干扰同时保证目标的完整轮廓是视频轮廓检测的一个难点, 基于运动感知的生物视觉证据, 提出一种运动能量抑制模型, 有效抑制背景边缘, 激励目标的强边缘. 通过归一化整理视频运动切片的四方向运动能量抑制响应, 反映V1 层视觉神经元的周围抑制感知特性, 进而采用"双半圆盘"算子提取边缘梯度响应, 同时, 结合运动和外观线索, 用随机森林对边缘梯度响应的 局部结构进行树划分, 得到最终的检测结果. 实验表明, 本文提出的方法较已有的视频轮廓检测方法有更 优的量化查全-查准率曲线、F-measure值和AP值以及更好的视觉轮廓感官效果.
  • [1] Zhang Gui-Mei, Zhang Song, Chu Jun. A new object detection algorithm using local contour features. Acta Automatica Sinica, 2014, 40(10): 2346-2355 (张桂梅, 张松, 储珺. 一种新的基于局部轮廓特征的目标检测方法. 自动化学报, 2014, 40(10): 2346-2355)
    [2] Arbelaez P, Pont-Tuset J, Barron J T, Margues F, Malik J. Multiscale combinatorial grouping. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 328-335
    [3] Tang Qi-Ling, Sang Nong, Liu Hai-Hua, Chen Xin-Hao. Detecting natural image contours by combining visual perception and machine learning. Science China Informationis, 2013, 43(9): 1124-1135 (唐奇伶, 桑农, 刘海华, 陈心浩. 视觉感知结合学习的自然图像轮廓检测. 中国科学: 信息科学, 2013, 43(9): 1124-1135)
    [4] Cai Jia-Xin, Feng Guo-Can, Tang Xin, Luo Zhi-Hong. Human action recognition based on local image contour and random forest. Acta Optica Sinica, 2014, 34(10): 1015006-1 -1015006-10 (蔡加欣, 冯国灿, 汤鑫, 罗志宏. 基于局部轮廓和随机森林的人体行为识别. 光学学报, 2014,34(10): 1015006-1-1015006-10)
    [5] Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916
    [6] Dollár P, Zitnick C L. Structured forests for fast edge detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 1841-1848
    [7] Dollár P, Zitnick C L. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1558-1570
    [8] Leordeanu M, Sukthankar R, Sminchisescu C. Efficient closed-form solution to generalized boundary detection. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012. 516-529
    [9] Xu Yu-Hua, Tian Zun-Hua, Zhang Yue-Qiang, Zhu Xian-Wei, Zhang Xiao-Hu. Adaptively combining color and depth for human body contour tracking. Acta Automatica Sinica, 2014, 40(8): 1623-1634 (徐玉华, 田尊华, 张跃强, 朱宪伟, 张小虎. 自适应融合颜色和深度信息的人体轮廓跟踪. 自动化学报, 2014,40(8): 1623-1634)
    [10] Sundberg P, Brox T, Maire M, Arbelaez P, Malik J. Occlusion boundary detection and figure/ground assignment from optical flow. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2011. 2233-2240
    [11] Stein A N, Hebert M. Occlusion boundaries from motion: low-level detection and mid-level reasoning. International Journal of Computer Vision, 2009, 82(3): 325-357
    [12] Tünnermann J, Mertsching B. Region-based artificial visual attention in space and time. Cognitive Computation, 2014, 6(1): 125-143
    [13] Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America. A, Optics and Image Science, 1985, 2(2): 284-299
    [14] Cannons K J, Wildes R P. The applicability of spatiotemporal oriented energy features to region tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(4): 784-796
    [15] He X M, Yuille A. Occlusion boundary detection using pseudo-depth. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece: Springer, 2010. 539-552
    [16] Chakraborty B, Holte M B, Moeslund T B, González J. Selective spatio-temporal interest points. Computer Vision and Image Understanding, 2012, 116(3): 396-410
    [17] Wang Y Y, Shanbhag S J, Fischer B J, Peña J L. Population-wide bias of surround suppression in auditory spatial receptive fields of the owl's midbrain. The Journal of Neuroscience, 2012, 32(31): 10470-10478
    [18] Carandini M, Heeger D J. Normalization as a canonical neural computation. Nature Reviews Neuroscience, 2011, 13(1): 51-62
    [19] Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 2003, 12(7): 729-739
    [20] Sang Nong, Tang Qi-Ling, Zhang Tian-Xu. Countour detection based on inhibition of primary visual cortex. Journal of Infrared Millimeter Waves, 2007, 26(1): 47-51 (桑农, 唐奇伶, 张天序. 基于初级视皮层抑制的轮廓检测方法. 红外与毫米波学报, 2007, 26(1): 47-51)
    [21] Goris R L T, Movshon J A, Simoncelli E P. Partitioning neuronal variability. Nature Neuroscience, 2014, 17(6): 858- 865
    [22] Yuval-Greenberg S, Heeger D J. Continuous flash suppression modulates cortical activity in early visual cortex. The Journal of Neuroscience, 2013, 33(23): 9635-9643
    [23] Tsui J M G, Hunter J N, Born R T, Pack C C. The role of V1 surround suppression in MT motion integration. Journal of Neurophysiology, 2010, 103(6): 3123-3138
    [24] Criminisi A, Shotton J, Konukoglu E. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 2012, 7(2-3): 81-227
    [25] Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning, 2006, 63(1): 3-42
    [26] Sargin M E, Bertelli L, Manjunath B S, Rose K. Probabilistic occlusion boundary detection on spatio-temporal lattices. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 560 -567
  • 加载中
计量
  • 文章访问数:  1347
  • HTML全文浏览量:  95
  • PDF下载量:  1292
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2015-06-13
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回