2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑风力发电批特征的电力机组调度问题

郎劲 唐立新

郎劲, 唐立新. 考虑风力发电批特征的电力机组调度问题. 自动化学报, 2015, 41(7): 1295-1305. doi: 10.16383/j.aas.2015.c140503
引用本文: 郎劲, 唐立新. 考虑风力发电批特征的电力机组调度问题. 自动化学报, 2015, 41(7): 1295-1305. doi: 10.16383/j.aas.2015.c140503
LANG Jin, TANG Li-Xin. Unit Commitment Problem for Wind Turbines Power Generation with Batching Characteristics Consideration. ACTA AUTOMATICA SINICA, 2015, 41(7): 1295-1305. doi: 10.16383/j.aas.2015.c140503
Citation: LANG Jin, TANG Li-Xin. Unit Commitment Problem for Wind Turbines Power Generation with Batching Characteristics Consideration. ACTA AUTOMATICA SINICA, 2015, 41(7): 1295-1305. doi: 10.16383/j.aas.2015.c140503

考虑风力发电批特征的电力机组调度问题

doi: 10.16383/j.aas.2015.c140503
基金项目: 

国家高技术研究发展计划(863计划) (2013AA040704), 国家自然科学基金(61374203), 国家自然科学基金创新研究群体科学基金(713210 01) 资助

详细信息
    作者简介:

    郎劲东北大学工业工程与物流优化研究所博士研究生. 主要研究方向为电力机组调度, 能源建模与优化.E-mail: langjin@ise.neu.edu.cn

Unit Commitment Problem for Wind Turbines Power Generation with Batching Characteristics Consideration

Funds: 

Supported by National High Technology Research and Development Program of China (863 Program) (2013AA040704), National Natural Science Foundation of China (61374203), and the Fund for Innovative Research Groups of the National Natural Science Foundation of China (71321001)

  • 摘要: 电力机组组合问题是在给定的计划周期内确定火电、风电和蓄 电池机组的开关机状态及发电量, 以满足系统的负荷需求、旋转备用等约束要求. 为了降低风电在电网中的供电不稳定 性, 引入蓄电池储能系统与风机进行协调调度. 由于大数量风机的介入, 明显增加了问 题处理的难度和复杂性. 本文从一个新的视角 将相近物理位置的风机进行组批, 基于批的视角对问题建立了批模型. 为 了提高批模型的性能, 提出了批模型参数的变换方法. 根据问题的NP-难特征和模 型的复杂结构, 开发了拉格朗日松弛(Lagrangian relaxation, LR)算法进 行求解. 为了加速算法的求解效率, 提出了子 问题近似求解的代理次梯度的拉格朗日松弛算法. 实验结果表明, 提出的批模型明 显优于传统的单机模型. 基于批模型开发的拉格朗日松弛算法与CPLEX优化软 件相比, 能够在较短的时间内获得高质量的解.
  • [1] European Wind Energy Association, Greenpeace. Wind Force 12. Beijing: China Environmental Science Press, 2004.(欧洲风能协会, 国际绿色和平. 风力12. 北京: 中国环境科学出版社, 2004.)
    [2] Sadanandan N D, Hilson D W, Needham M E, Morris K W, Sendaula M. Impact assessment of wind generation on the operations of a power system. IEEE Transactions on Power Apparatus and Systems, 1983, 102(9): 2905-2911
    [3] Wang J H, Shahidehpour M, Li Z Y. Security-constrained unit commitment with volatile wind power generation. IEEE Transactions on Power Systems, 2008, 23(3): 1319-1327
    [4] Chen C L. Optimal wind-thermal generating unit commitment. IEEE Transactions on Energy Conversion, 2008, 23(1): 273-281
    [5] Chen C L, Lee T Y, Jan R M. Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity. Energy Conversion and Management, 2006, 47(18-19): 3456-3472
    [6] Denny E, O'Malley M. Wind generation, power system operation, and emissions reduction. IEEE Transactions on Power Systems, 2006, 21(1): 341-347
    [7] Tuohy A, Meibom P, Denny E, O'Malley M. Unit commitment for systems with significant wind penetration. IEEE Transactions on Power Systems, 2009, 24(2): 592-601
    [8] Miranda V, Hang P S. Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers. IEEE Transactions on Power Systems, 2005, 20(4): 2143-2145
    [9] Hetzer J, Yu D C, Bhattarai K. An economic dispatch model incorporating wind power. IEEE Transactions on Energy Conversion, 2008, 23(2): 603-611
    [10] Abreu L. Wind Power Generation and Dispatch in Competitive Power Markets [Ph.D. dissertation], Illinois Institute of Technology, USA, 2008.
    [11] Yuan Y, Zhang X S, Ju P, Li Q, Qian K J, Fu Z X. Determination of economic dispatch of wind farm-battery energy storage system using genetic algorithm. International Transactions on Electrical Energy Systems, 2014, 24(2): 264-280
    [12] Thatte A A, Xie L, Viassolo D E, Singh S. Risk measure based robust bidding strategy for arbitrage using a wind farm and energy storage. IEEE Transactions on Smart Grid, 2013, 4(4): 2191-2199
    [13] Zhao C Y, Wang J H, Watson J P, Guan Y P. Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Transactions on Power Systems, 2013, 28(3): 2708-2717
    [14] Jiang R W, Wang J H, Guan Y P. Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 2012, 27(2): 800-810
    [15] Lee C, Liu C, Mehrotra S J, Shahidehpour M. Modeling transmission line constraints in two-stage robust unit commitment problem. IEEE Transactions on Power Systems, 2014, 29(3): 1221-1231
    [16] Jiao Chun-Ting, Guan Xiao-Hong, Wu Jiang, Lei Xue-Jiao, Li Pan. Security-constrained unit commitment with large-scale cross-region wind penetration. In: Proceedings of the 33rd Chinese Control Conference. Nanjing, China: 2014. 28 -30(焦春亭, 管晓宏, 吴江, 雷雪娇, 李盼. 考虑大规模风电跨区消纳的电力系统调度. 第33届中国控制会议. 南京, 中国: 2014. 28-30)
    [17] Wu Xiong, Wang Xiu-Li, Li Jun, Guo Jing-Li, Zhang Kai, Chen Jie. A joint operation model and solution for hybrid wind energy storage systems. Proceedings of the CSEE, 2013, 33(13): 10-17(吴雄, 王秀丽, 李骏, 郭静丽, 张凯, 陈洁. 风电储能混合系统的联合调度模型及求解. 中国电机工程学报, 2013, 33(13): 10-17)
    [18] Hu Ze-Chun, Ding Hua-Jie, Kong Tao. A joint daily operational optimization model for wind power and pumped-storage plant. Automation of Electric Power Systems, 2012, 36(2): 36-41, 57(胡泽春, 丁华杰, 孔涛. 风电--抽水蓄能联合日运行优化调度模型. 电力系统自动化, 2012, 36(2): 36-41, 57)
    [19] Wang Cheng-Xu, Zhang Yuan. Wind Power Generation. Beijing: China Electric Power Press, 2003.(王承煦, 张源. 风力发电. 北京: 中国电力出版社, 2003.)
    [20] Chedid R, Akiki H, Rahman S. A decision support technique for the design of hybrid solar-wind power systems. IEEE Transactions on Energy Conversion, 1998, 13(1): 76-83
    [21] Shapiro J F. Generalized Lagrange multipliers in integer programming. Operations Research, 1971, 19(1): 68-76
    [22] Fisher M L. The Lagrangian relaxation method for solving integer programming problems. Management Science, 1981, 27(1): 1-18
    [23] Guan X, Luh P B, Yan H, Amalfi J A. An optimization-based method for unit commitment. International Journal of Electrical Power and Energy Systems, 1992, 14(1): 9-17
    [24] Kaskavelis C A, Caramanis M C. Efficient Lagrangian relaxation algorithms for industry size job-shop scheduling problems. IIE Transactions, 1998, 30(11): 1085-1097
    [25] Bard J F. Short-term scheduling of thermal-electric generators using Lagrangian relaxation. Operations Research, 1988, 36(5): 756-766
  • 加载中
计量
  • 文章访问数:  1588
  • HTML全文浏览量:  79
  • PDF下载量:  1226
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-04
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-07-20

目录

    /

    返回文章
    返回