2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类新的二阶滑模控制方法及其在倒立摆控制中的应用

李雪冰 马莉 丁世宏

李雪冰, 马莉, 丁世宏. 一类新的二阶滑模控制方法及其在倒立摆控制中的应用. 自动化学报, 2015, 41(1): 193-202. doi: 10.16383/j.aas.2015.c140263
引用本文: 李雪冰, 马莉, 丁世宏. 一类新的二阶滑模控制方法及其在倒立摆控制中的应用. 自动化学报, 2015, 41(1): 193-202. doi: 10.16383/j.aas.2015.c140263
LI Xue-Bing, MA Li, DING Shi-Hong. A New Second-order Sliding Mode Control and Its Application to Inverted Pendulum. ACTA AUTOMATICA SINICA, 2015, 41(1): 193-202. doi: 10.16383/j.aas.2015.c140263
Citation: LI Xue-Bing, MA Li, DING Shi-Hong. A New Second-order Sliding Mode Control and Its Application to Inverted Pendulum. ACTA AUTOMATICA SINICA, 2015, 41(1): 193-202. doi: 10.16383/j.aas.2015.c140263

一类新的二阶滑模控制方法及其在倒立摆控制中的应用

doi: 10.16383/j.aas.2015.c140263
基金项目: 

国家自然科学基金(61203054);江苏省高校优势学科建设工程资助项目(PAPD, 苏政办发(2011)6号;江苏省自然科学基金(BK2012283)资助

详细信息
    作者简介:

    李雪冰 江苏大学电气信息工程学院硕士研究生.主要研究方向为滑模变结构控制理论.E-mail:lxb121619@163.com

    通讯作者:

    丁世宏 江苏大学电气信息工程学院副教授.主要研究主向为非线性系统,高阶滑模控制,DC-DC控制.本文通信作者.E-mail:dsh@ujs.edu.cn

A New Second-order Sliding Mode Control and Its Application to Inverted Pendulum

Funds: 

Supported by National Natural Science Foundation of China (61203054), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, (2011)6), and Natural Science Foundation of Jiangsu Province (BK2012283)

  • 摘要: 二阶滑模作为高阶滑模的特殊情形, 不仅具有传统滑模鲁棒性强、对外界干扰不敏感的特点, 而且能够有效地消弱传统一阶滑模中存在的"抖振"现象. 本文设计了一种新的二阶滑模控制算法. 该算法的优点是假设不确定性是由非负函数限制而不是由常数限定. 因此, 该算法在实际应用中具有更广的应用范围. 此外, 算法中的加幂积分技术保证了系统在有限时间内稳定, 而不是传统二阶滑模中普遍存在的有限时间收敛, 并给出了严格的数学证明. 最后, 在倒立摆控制中的应用验证了该算法的有效性.
  • [1] Liu Jin-Kun, Sun Fu-Chun. Research and development on theory and algorithms of sliding mode control. Control Theory and Applications, 2007, 24(3): 407-418 (刘金琨, 孙福春. 滑模变结构控制理论及其算法研究与进展. 控制理论及应用, 2007, 24(3): 407-418)
    [2] Ding S H, Li S H. Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerospace Science and Technology, 2009, 13(4-5): 256-265
    [3] Liu Yue, Ma Shu-Ping. A singular system approach to output feedback sliding mode control for time-delay systems. Acta Automatica Sinica, 2013, 39(5): 594-601 (刘月, 马树萍. 时滞系统的输出反馈滑模控制的一种奇异系统方法. 自动化学报, 2013, 39(5): 594-601)
    [4] Wang He, Li Yao-Feng, Zhang Shou-Long, Dong Chen. Chaotic oscillation control based on adaptive terminal sliding mode. Proceedings of the CSU-EPSA, 2013, 25(3): 152-157 (王鹤, 李耀峰, 张守龙, 董晨. 基于自适应Terminal 滑模的混沌振荡控制. 电力系统及其自动化学报, 2013, 25(3): 152-157)
    [5] Pu Ming, Wu Qing-Xian, Jiang Chang-Sheng, Dian Song-Yi, Wang Yu-Fei. Recursive terminal sliding mode control for higher-order nonlinear system with mismatched uncertainties. Acta Automatica Sinica, 2012, 38(11): 1777-1793 (蒲明, 吴庆宪, 姜长生, 佃松宜, 王宇飞. 非匹配不确定高阶非线性系统递阶Terminal滑模控制. 自动化学报, 2012, 38(11): 1777-1793)
    [6] Utkin V I, Lee H. The chattering analysis. In: Proceedings of the 12th International Power Electronics and Motion Control. Portoroz: IEEE, 2006. 2014-2019
    [7] Slotine J J, Sastry S S. Tracking control of non-linear systems using sliding surfaces with application to robot manipulators. International Journal of Control, 1983, 38(2): 465-492
    [8] Gao Wei-Bing. Theory and design method of variable structure control. BeiJing: Science Press, 1996.(高为炳. 变结构控制的理论及设计方法. 北京: 科学出版社, 1996.)
    [9] Levant A. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 1993, 58(6): 1247-1263
    [10] Levant A. Principles of 2-sliding mode design. Automatica, 2007, 43(4): 576-586
    [11] Levant A. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 2003, 76(9): 924-941
    [12] Chen Jie, Li Zhi-Ping, Zhang Guo-Zhu. Higher-order sliding-mode controller for a class of uncertain nonlinear systems. Control Theory and Applications, 2010, 27(5): 563-569 (陈杰, 李志平, 张国柱. 不确定非线性系统的高阶滑模控制器设计. 控制理论及应用, 2010, 27(5): 563-569)
    [13] Emelyanov S V, Korovin S K, Levantovskii L V. Higher-order sliding modes in binary control systems. Soviet Physics Doklady, 1986, 31(4): 291-293
    [14] Ma Ke-Mao. Design of higher order sliding mode attitude control laws for large-scale spacecraft. Control and Decision, 2013, 28(2): 201-204(马克茂. 大型空间飞行器的高阶滑模姿态控制律设计. 控制与决策, 2013, 28(2): 201-204)
    [15] Fan Jin-Suo, Zhang He-Xin, Zhang Ming-Kuan, Zhou Xin. Adaptive second-order terminal sliding mode control for aircraft re-entry attitude. Control and Decision, 2012, 27(3): 403-407 (范金锁, 张合新, 张明宽, 周鑫. 基于自适应二阶终端滑模的飞行器再入姿态控制. 控制与决策, 2012, 27(3): 403-407)
    [16] Shi Hong-Yu, Feng Yong. High-order terminal sliding mode flux observer for induction motors. Acta Automatica Sinica, 2012, 38(2): 288-294 (史宏宇, 冯勇. 感应电机高阶终端滑模磁链观测器的研究. 自动化学报, 2012, 38(2): 288-294)
    [17] Hu Yue-Ming, Chao Hong-Min, Li Zhi-Quan, Liang Tian-Pei. High-order sliding mode control of nonlinear affine control systems. Acta Automatica Sinica, 2002, 28(2): 284-289 (胡跃明, 晁红敏, 李志权, 梁天培. 非线性仿射控制系统的高阶滑模控制. 自动化学报, 2002, 28(2): 284-289)
    [18] Boiko I, Fridman L, Pisano A, Usai E. On the transfer properties of the generalized sub-optimal second-order sliding mode control algorithm. IEEE Transactions on Automatic Control, 2009, 54(2): 399-403
    [19] Shtessel Y B, Foreman D C, Tournes C H. Stability margins in traditional and second order sliding mode control. In: Proceedings of the 50th IEEE Conference on Decision and Control and Control Conference. Orlando, FL, USA: IEEE, 2011. 4604-4609
    [20] Pan Y D, Liu G J, Kumar K D. Robust stability analysis of asymptotic second-order sliding mode control system using Lyapunov function. In: Proceedings of the 2010 IEEE International Conference on Information and Automation. Harbin, Heilongjiang, China: IEEE, 2010. 313-318
    [21] Zong Q, Zhao Z S, Zhang J. Brief paper: higher order sliding mode control with self-tuning law based on integral sliding mode. IET Control Theory and Applications, 2010, 4(7): 1282-1289
    [22] Levant A, Michael A. Adjustment of high-order sliding-mode controllers. International Journal of Robust and Nonlinear Control, 2009, 19(15): 1657-1672
    [23] Bartolini G, Pisano A, Usai E. Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics. IEEE Transactions on Automatic Control, 2001, 46(11): 1826-1832
    [24] Qian C, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079
    [25] Ding S H, Li S H, Zheng W X. Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica, 2012, 48(10): 2597-2606
    [26] Qian C J, Lin W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Systems and Control Letters, 2001, 42(3): 185-200
    [27] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766
    [28] Wang X D. Research on Fuzzy Control Algorithm Based on Inverted Pendulum System [Master dissertation], Xidian University, China, 2012.(王旭东. 基于倒立摆系统的模糊控制算法研究[硕士学位论文]. 西安电子科技大学. 中国, 2012.)
    [29] Pei Y L. Inverted Pendulum System Stability Control Algorithm Research [Master dissertation], Chongqing University, China, 2012.(裴月琳. 倒立摆系统稳摆控制算法研究[硕士学位论文].重庆大学. 2012.)
    [30] Moreno J A, Osorio M. A Lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 2856-2861
  • 加载中
计量
  • 文章访问数:  2089
  • HTML全文浏览量:  125
  • PDF下载量:  1402
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 修回日期:  2014-07-18
  • 刊出日期:  2015-01-20

目录

    /

    返回文章
    返回