2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双端切换拓扑下基于二值通信的多智能体系统容错控制

王祚 朱延正 陈新开 杨帆 苏春翌

王祚, 朱延正, 陈新开, 杨帆, 苏春翌. 双端切换拓扑下基于二值通信的多智能体系统容错控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/i.aas.c210722
引用本文: 王祚, 朱延正, 陈新开, 杨帆, 苏春翌. 双端切换拓扑下基于二值通信的多智能体系统容错控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/i.aas.c210722
Wang Zuo, Zhu Yan-Zheng, Chen Xin-Kai, Yang Fan, Su Chun-Yi. Fault-tolerant control for multi-agent systems based on binary-valued communication under dual-terminal switching topologies. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/i.aas.c210722
Citation: Wang Zuo, Zhu Yan-Zheng, Chen Xin-Kai, Yang Fan, Su Chun-Yi. Fault-tolerant control for multi-agent systems based on binary-valued communication under dual-terminal switching topologies. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/i.aas.c210722

双端切换拓扑下基于二值通信的多智能体系统容错控制

doi: 10.16383/i.aas.c210722 cstr: 32138.14.j.aas.c210722
基金项目: 国家重点研发计划(2024YFB3310701), 国家自然科学基金(62222310, 61973131, U1813201), 山东省泰山学者人才工程, 山东省自然科学基金重大基础研究项目(ZR2024ZD38), 日本学术振兴会项目(21K04129)资助
详细信息
    作者简介:

    王祚:华侨大学机电及自动化学院博士研究生. 2021年获得渤海大学控制科学与控制工程专业硕士学位. 主要研究方向为多智能体系统一致性控制. E-mail: wangzuo_2018@163.com

    朱延正:山东科技大学电气与自动化工程学院教授. 2016年获得哈尔滨工业大学控制科学与工程专业博士学位. 主要研究方向为非确定切换系统控制理论与方法. 本文通信作者. E-mail: yanzhengzhu@sdust.edu.cn

    陈新开:芝浦工业大学电子与信息系统系教授. 1999年获得名古屋大学工学博士学位. 主要研究方向为自适应控制和滑模控制. E-mail: chen@sic.shibaura-it.ac.jp

    杨帆:华侨大学机电及自动化学院教授. 2008年获得康考迪亚大学获得机械工程专业博士学位. 主要研究方向为机电一体化和振动控制. E-mail: xmyf@hotmail.com

    苏春翌:康考迪亚大学机械与工业工程系教授. 1990年获得华南理工大学控制工程专业毕业博士学位. 主要研究方向为机电一体化系统及机器人控制. E-mail: cysu@alcor.concordia.ca

Fault-tolerant Control for Multi-agent Systems Based on Binary-valued Communication Under Dual-terminal Switching Topologies

Funds: Supported by National Key Research and Development Program of China (2024YFB3310701), National Natural Science Foundation of China (62222310, 61973131, U1813201), Research Fund for the Taishan Scholar Project of Shandong Province of China, Major Basic Research of Natural Science Foundation of Shandong Province (ZR2024ZD38), and Japan Society for the Promotion of Science (21K04129).
More Information
    Author Bio:

    WANG Zuo Ph.D. candidate at the College of Mechanical Engineering and Automation, Huaqiao University. He received his M.S. degree in control theory and control engineering from Bohai University in 2021. His research interest covers multi-agent system consensus control

    ZHU Yan-Zheng Professor at the College of Electrical Engineering and Automation, Shandong University of Science and Technology. He received his Ph.D. degree in control science and engineering from the Harbin Institute of Technology in 2016. His research interest covers control theory and method of nondeterministic switching systems. Corresponding author of this paper

    CHEN Xin-Kai Professor at the Department of Electronic and Information Systems, Shibaura Institute of Technology. He received his Ph.D. degree in engineering from Nagoya University in 1999. His research interest covers adaptive control and sliding mode control

    YANG Fan Professor at the College of Mechanical Engineering and Automation, Huaqiao University. He received his Ph.D. degree in mechanical engineering from Concordia University in 2008. His research interest covers mechatronics and vibration control

    SU Chun-Yi Professor at the Department of Mechanical and Industrial Engineering, Concordia University. He received his Ph.D. degree in control engineering from the South China University of Technology in 1990. His research interest covers mechatronics system and robot control

  • 摘要: 针对一类双端切换拓扑下基于二值通信的多智能体系统, 研究其迭代学习容错均值一致性控制问题. 为了降低通信负担和提高数据传输的安全性, 假设每个智能体只能从其邻居处接收到二值信息, 建立一类双端切换拓扑结构以调控智能体之间的信息传递, 放宽通信拓扑在时间轴上需要完整生成树的限制. 在双迭代尺度框架下, 通过二值信息的估计过程和迭代学习控制技术的交替使用, 实现对智能体邻居状态的估计, 并完成均值一致性控制任务. 进一步地, 针对系统存在执行器故障的影响, 提出一种迭代学习容错均值一致性控制方案, 利用迭代学习实现对故障参数的迭代估计, 以保证系统在执行器故障影响下的性能. 基于非负的复合能量函数理论, 证明所得到的误差系统是有界的. 最后, 利用数值仿真算例验证所提方法的可行性与有效性.
  • 图  1  双端切换拓扑

    Fig.  1  Dual-terminal switching topologies

    图  2  切换信号$\varrho(t)$

    Fig.  2  Switching signal $\varrho(t)$

    图  3  双端切换拓扑下第30、120、210和300次迭代智能体的状态响应

    Fig.  3  States response of the agents on 30th,120th,210th and 300th iteration under dual-terminal switching topologies

    图  4  双端切换拓扑下智能体的均值一致性误差

    Fig.  4  Averaging consensus errors of the agents under dual-terminal switching topologies

    图  5  不具备完整生成树的切换拓扑

    Fig.  5  Switching topologies without complete spanning tree

    图  6  不具备完整生成树的切换拓扑下第30、120、210和300次迭代智能体的状态响应

    Fig.  6  States response of the agents on 30th,120th,210th and 300th iteration under switching topologies without complete spanning tree

  • [1] He S D, and Wang M, and Dai S L, and Luo F. Leader-follower formation control of USVs with prescribed performance and collision avoidance. IEEE Transactions on Industrial Informatics, 2019, 15(1): 572−581 doi: 10.1109/TII.2018.2839739
    [2] Li Y M, and Feng K L, and Li K W. Finite-time fuzzy adaptive dynamic event-triggered formation tracking control for USVs with actuator faults and multiple constraints. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5285−5296 doi: 10.1109/TII.2023.3331101
    [3] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215−233 doi: 10.1109/JPROC.2006.887293
    [4] Guo X Y, and Zhang H G, and Sun J Y, Zhou Y. Fixed-time fuzzy adaptive control of manipulator systems under multiple constraints: A modified dynamic surface control approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2522−2532 doi: 10.1109/TSMC.2022.3212988
    [5] Ren H R, Cheng Z J, Qin J H, Lu R Q. Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automatica, 2023, 154: 111100 doi: 10.1016/j.automatica.2023.111100
    [6] Wu Y, Chen M, Chadli M, Li H Y. Dual-type-triggers-based cooperative adaptive critic control of swarm UAVs under FDI attacks. Automatica, 2024, 167: 111757 doi: 10.1016/j.automatica.2024.111757
    [7] 应晨铎, 伍益明, 徐明, 郑宁, 何熊熊. 欺骗攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2023, 49(2): 425−436

    Ying C D, Wu Yi M, Xu M, Zheng N, He X X. Privacy-preserving average consensus control formulti-agent systems under deception attacks. Acta Automatica Sinica, 2023, 49(2): 425−436
    [8] 杨彬, 周琪, 曹亮, 鲁仁全. 具有指定性能和全状态约束的多智能体系统事件触发控制. 自动化学报, 2019, 45(8): 1527−1535

    Yang B, Zhou Q, Cao L, Lu R Q. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527−1535
    [9] Li H Q, Liao X F, Huang T W, Zhu W. Event-triggering sampling based leader-following consensus in second-order multi-agent systems. IEEE Transactions on Automatic Control, 2015, 60(7): 1998−2003 doi: 10.1109/TAC.2014.2365073
    [10] Li K, Hua C C, You X, Ahn C K. Leader-following consensus control for uncertain feedforward stochastic nonlinear multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 1049−1057 doi: 10.1109/TNNLS.2021.3105109
    [11] Yao D Y, Li H Y, Shi Y. Event-based average consensus of disturbed MASs via fully distributed sliding mode control. IEEE Transactions on Automatic Control, 2024, 69(3): 2015−2022 doi: 10.1109/TAC.2023.3317505
    [12] Li X J, Bo S, Zhang X W, Qin Y, Yin X Y. Data-driven parallel koopman subsystem modeling and distributed moving horizon state estimation for large-scale nonlinear processes. AIChE Journal, 2024, 70(3): e18326 doi: 10.1002/aic.18326
    [13] 范泉涌, 张乃宗, 唐勇, 许斌. 基于动态事件触发通信协议的多智能体系统自适应可靠控制. 自动化学报, 2024, 50(5): 924−936

    Fan Q Y, Zhang N Z, Tang Y, Xu B. Adaptive reliable control of multi-agent systems based on dynamic event-triggered communication protocol. Acta Automatica Sinica, 2024, 50(5): 924−936
    [14] Mei J, Ren W, Song Y D. A unified framework for adaptive leaderless consensus of uncertain multiagent systems under directed graphs. IEEE Transactions on Automatic Control, 2021, 66(12): 6179−6186 doi: 10.1109/TAC.2021.3062594
    [15] Ma D, Chen J Q, Lu R Q, Chen J, Chai T Y. Delay consensus margin of first-order multiagent systems with undirected graphs and pd protocols. IEEE Transactions on Automatic Control, 2021, 66(9): 4192−4198 doi: 10.1109/TAC.2020.3035556
    [16] Psillakis H E. Consensus in networks of agents with unknown high-frequency gain signs and switching topology. IEEE Transactions on Automatic Control, 2017, 62(8): 3993−3998 doi: 10.1109/TAC.2016.2616645
    [17] Wen G H, Zheng W X. On constructing multiple lyapunov functions for tracking control of multiple agents with switching topologies. IEEE Transactions on Automatic Control, 2019, 64(9): 3796−3803 doi: 10.1109/TAC.2018.2885079
    [18] 孙梦薇, 任璐, 刘剑, 孙长银. 切换拓扑下动态事件触发多智能体系统固定时间一致性. 自动化学报, 2023, 49(6): 1295−1305

    Sun M W, Ren L, Liu J, Sun C Y. Dynamic event-triggered fixed-time consensus control of multi-agent systems under switching topologies. Acta Automatica Sinica, 2023, 49(6): 1295−1305
    [19] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520−1533 doi: 10.1109/TAC.2004.834113
    [20] Wang P J, Wen G H, Yu W W, Huang T W, Yu X H. Asymptotical consensus of mimo linear multiagent systems with a nonautonomous leader and directed switching topology: a continuous approach. IEEE Transactions on Control of Network Systems, 2023, 10(3): 1326−1337 doi: 10.1109/TCNS.2022.3226944
    [21] Razaq, M A, Rehan M, Tufail M, Ahn C K. Multiple lyapunov functions approach for consensus of one-sided lipschitz multi-agents over switching topologies and input saturation. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2020, 67(12): 3267−3271 doi: 10.1109/TCSII.2020.2986009
    [22] Frasca P, and Carli R, and Fagnani F, and Zampieri S. Average consensus on networks with quantized communication. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 2009, 19(16): 1787−1816
    [23] Liu S, and Li T, and Xie L H, and Fu M Y, and Zhang J-F. Continuous-time and sampled-data-based average consensus with logarithmic quantizers. Automatica, 2013, 49(11): 3329−3336 doi: 10.1016/j.automatica.2013.07.016
    [24] Hu M, Wang T, Zhao Y L. Consensus of switched multi-agent systems with binary-valued communications. Science China Information Sciences, 2022, 65(6): 162207 doi: 10.1007/s11432-020-3052-0
    [25] Ning Z P, Feng G, Yin X Y. Asynchronous quantized control of piecewise-affine systems. IEEE Transactions on Automatic Control, 2024, 69(1): 503−510 doi: 10.1109/TAC.2023.3266978
    [26] Wang L Y, Zhang J F, Yin G G. System identification using binary sensors. IEEE Transactions on Automatic Control, 2003, 48(11): 1892−1907 doi: 10.1109/TAC.2003.819073
    [27] Zhao Y L, Wang T, Bi W J. Consensus protocol for multiagent systems with undirected topologies and binary-valued communications. IEEE Transactions on Automatic Control, 2019, 64(1): 206−221 doi: 10.1109/TAC.2018.2814632
    [28] Wang T, Zhang H, Zhao Y L. Consensus of multi-agent systems under binary-valued measurements and recursive projection algorithm. IEEE Transactions on Automatic Control, 2020, 65(6): 2678−2685 doi: 10.1109/TAC.2019.2942569
    [29] Chen J N, Hua C C. Adaptive iterative learning fault-tolerant consensus control of multiagent systems under binary-valued communications. IEEE Transactions on Cybernetics, 2023, 53(11): 6751−6760 doi: 10.1109/TCYB.2021.3123697
    [30] Li X J, Bo S, Qin Y, Yin X Y. Iterative distributed moving horizon estimation of linear systems with penalties on both system disturbances and noise. Chemical Engineering Research and Design, 2023, 194: 878−893 doi: 10.1016/j.cherd.2023.05.020
    [31] Ahn H S, Chen Y Q, Moore K L. Iterative learning control: Brief survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(6): 1099−1121 doi: 10.1109/TSMCC.2007.905759
    [32] Yang S P, Xu J X, Li X F, Shen D. Iterative learning control for multiagent systems coordination. John Wiley & Sons, 2017.
    [33] Bu X H, Yu Q X, Hou Z S, and Qian W. Model free adaptive iterative learning consensus tracking control for a class of nonlinear multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(4): 677−686 doi: 10.1109/TSMC.2017.2734799
    [34] Ren H R, Ma H, Li H Y, Wang Z Y. Adaptive fixed-time control of nonlinear MASs with actuator faults. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1252−1262 doi: 10.1109/JAS.2023.123558
    [35] Li K, Ding S X, Zheng W X, Hua C C. Global distributed fault-tolerant consensus control of nonlinear delayed multiagent systems with hybrid faults. IEEE Transactions on Automatic Control, 2024, 69(3): 1967−1974 doi: 10.1109/TAC.2023.3303098
    [36] Cai Y L, Zhang H G, Li W H, Mu Y F, He Q. Distributed bipartite adaptive event-triggered fault-tolerant consensus tracking for linear multiagent systems under actuator faults. IEEE Transactions on Cybernetics, 2022, 52(11): 11313−11324 doi: 10.1109/TCYB.2021.3069955
    [37] Wang C L, Wen C Y, Guo L. Adaptive consensus control for nonlinear multiagent systems with unknown control directions and time-varying actuator faults. IEEE Transactions on Automatic Control, 2021, 66(9): 4222−4229 doi: 10.1109/TAC.2020.3034209
    [38] Chen S, Ho D W C, Li L L, Liu M. Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Transactions on Cybernetics, 2015, 45(10): 2142−2155 doi: 10.1109/TCYB.2014.2366204
    [39] Li H Y, Wu Y, Chen M. Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm. IEEE Transactions on Cybernetics, 2021, 51(3): 1163−1174 doi: 10.1109/TCYB.2020.2982168
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-10
  • 录用日期:  2025-02-14
  • 网络出版日期:  2025-05-14

目录

    /

    返回文章
    返回