2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多点测试的多模型机动目标跟踪算法

王伟 余玉揆

王伟, 余玉揆. 多点测试的多模型机动目标跟踪算法. 自动化学报, 2015, 41(6): 1201-1212. doi: 10.16383/j.aas.2015.c140471
引用本文: 王伟, 余玉揆. 多点测试的多模型机动目标跟踪算法. 自动化学报, 2015, 41(6): 1201-1212. doi: 10.16383/j.aas.2015.c140471
WANG Wei, YU Yu-Kui. Multi-try and Multi-model Particle Filter for Maneuvering Target Tracking. ACTA AUTOMATICA SINICA, 2015, 41(6): 1201-1212. doi: 10.16383/j.aas.2015.c140471
Citation: WANG Wei, YU Yu-Kui. Multi-try and Multi-model Particle Filter for Maneuvering Target Tracking. ACTA AUTOMATICA SINICA, 2015, 41(6): 1201-1212. doi: 10.16383/j.aas.2015.c140471

多点测试的多模型机动目标跟踪算法

doi: 10.16383/j.aas.2015.c140471
基金项目: 

新世纪优秀人才支持计划(NCET-11-0827),中央高校基本业务费专项资金(HEUCFX41308),中国博士后科学基金(2014M550182),黑龙江省博士后特别资助资金(LBH-TZ0410), 哈尔滨市科技创新人才(2013RFXXJ016)资助

详细信息
    作者简介:

    余玉揆 哈尔滨工程大学自动化学院博士研究生. 2011 年获得合肥工业大学自动化学院学士学位. 主要研究方向为非线性滤波, 光纤非线性, 光纤通信.E-mail: yykmaidou@gmail.com

    通讯作者:

    王伟 哈尔滨工程大学自动化学院教授. 2006 年获得哈尔滨工程大学自动化学院博士学位. 主要研究方向为高精度惯性器件与捷联惯性导航, 先进控制理论及应用. E-mail: wangwei407@hrbeu.edu.cn

Multi-try and Multi-model Particle Filter for Maneuvering Target Tracking

Funds: 

Supported by the New Century Excellent Talents Support Program (NCET-11-0827), Fundamental Research Funds for the Central Universities (HEUCFX41308), China Postdoctoral Science Foundation (2014M550182), Heilongjiang Postdoctoral Special Fund (LBH-TZ0410), and Innovation of Science and Technology Talents in Harbin (2013RFXXJ016)

  • 摘要: 针对机动目标跟踪问题,提出了一种多点测试多模型粒子滤波算法(Independence multi-try method, IMTM).整个算法分为两个阶段,第一阶段为利用多点测试(Multi-try method, MTM)结构从各模型产生的粒子中选取一个最优粒子,实现了模型间的交互;第二阶段为利用IMH (Independence Metropolis-Hastings)滤波算法对第一阶段产生的粒子进行取舍,完成整个状态估计.相对于传统的交互式多模型(Interacting multiple model, IMM)算法,该算法无需事先设定模型转移概率 矩阵且为整体并行结构,结构简单,能够充分地交互各模型之间的粒子,进而自动有效地调整各模型权值比重,降低了人为干扰.仿真表明,该算法能够有效地降低滤波峰值误差,整体跟踪精度较高,算法的实时性较好.
  • [1] Blom H A P, Bar-shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Transactions on Automatic Control, 1988, 33(8): 780 -783
    [2] [2] Li X R, Jilkov V P. Survey of maneuvering target tracking, Part V. Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321
    [3] Shi Yong, Han Chong-Zhao. Adaptive UKF method with applications to target tracking. Acta Automatica Sinica, 2011, 37(6): 755-759(石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用. 自动化学报, 2011, 37(6): 755-759)
    [4] [4] Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering, 2009, 12: 656-704
    [5] [5] Foo P H, Ng G W. Combining the interacting multiple model method with particle filters for manoeuvring target tracking. IET Radar, Sonar and Navigation, 2011, 5(3): 234 -255
    [6] [6] Gordon N J, Maskell S, Kirubarajan T. Efficient particle filters for joint tracking and classification. In: Proceedings of the 2002 SPIE 4728: Signal and Data Processing of Small Targets. Orlando, FL, USA: SPIE, 2002. 439-449
    [7] [7] Hong S H, Shi Z G, Chen K S. Easy-hardware-implementation MMPF for maneuvering target tracking: algorithm and architecture. Journal of Signal Processing Systems, 2010, 61(3): 259-269
    [8] [8] McGinnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012
    [9] [9] Yang N, Tian W F, Jin Z H. An interacting multiple model particle filter for manoeuvring target location. Measurement Science and Technology, 2006, 17(6): 1307-1311
    [10] Boers Y, Driessen J N. Interacting multiple model particle filter. IEE Proceedings Radar, Sonar, and Navigation, 2003, 150(5): 344-349
    [11] Sankaranarayanan A C, Chellappa R, Srivastava A. Algorithmic and architectural design methodology for particle filters in hardware. In: Proceedings of the 2005 IEEE International Conference on Computer Design: VLSI in Computers and Processors. San Jose, CA, USA: IEEE, 2005. 275- 280
    [12] Miao L F, Zhang J J, Chakrabarti C, Papandreou-Suppappola A. A new parallel implementation for particle filters and its application to adaptive waveform design. In: Proceedings of the 2010 IEEE Workshop on Signal Processing Systems (SIPS). San Francisco, CA: IEEE, 2010. 978(1): 19-24
    [13] Liu J S. Monte Carlo Strategies in Scientific Computing. New York: Springer Science and Business Media, 2004. 111 -123
    [14] Liu J S, Liang F M, Wong W H. The multiple-try method and local optimization in Metropolis sampling. Journal of the American Statistical Association, 2000, 95(449): 121- 134
    [15] Qin Z S, Liu J S. Multi-point Metropolis method with application to hybrid Monte Carlo. Journal of Computational Physics, 2001, 172(2): 827-840
    [16] Storvik G. On the flexibility of Metropolis-Hastings acceptance probabilities in auxiliary variable proposal generation. Scandinavian Journal of Statistics, 2011, 38(2): 342-358
    [17] Pandolfi S, Bartolucci F, Friel N. A generalization of the multiple-try Metropolis algorithm for Bayesian estimation and model selection. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. 2010. 581-588
    [18] Casarin R, Craiu R, Leisen F. Interacting multiple try algorithms with different proposal distributions. Statistics and Computing, 2013, 23(2): 185-200
    [19] Blom H A P, Bloem E A. Exact Bayesian and particle filtering of stochastic hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 55-70
    [20] Sankaranarayanan A C, Srivastava A, Chellappa R. Algorithmic and architectural optimizations for computationally efficient particle filtering. IEEE Transactions on Image Processing, 2008, 17(5): 737-748
    [21] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
    [22] Linder S P, Schell C. A non-Bayesian segmenting tracker for highly maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1168-1177
    [23] Wang Xiao, Han Chong-Zhao. A multiple model particle filter for maneuvering target tracking based on composite sampling. Acta Automatica Sinica, 2013, 39(7): 1152-1156(王晓, 韩崇昭. 基于混合采样的多模型机动目标跟踪算法. 自动化学报, 2013, 39(7): 1152-1156)
  • 加载中
计量
  • 文章访问数:  1667
  • HTML全文浏览量:  97
  • PDF下载量:  1340
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-01
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回