2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引入视觉注意机制的目标跟踪方法综述

黎万义 王鹏 乔红

黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述. 自动化学报, 2014, 40(4): 561-576. doi: 10.3724/SP.J.1004.2014.00561
引用本文: 黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述. 自动化学报, 2014, 40(4): 561-576. doi: 10.3724/SP.J.1004.2014.00561
LI Wan-Yi, WANG Peng, QIAO Hong. A Survey of Visual Attention Based Methods for Object Tracking. ACTA AUTOMATICA SINICA, 2014, 40(4): 561-576. doi: 10.3724/SP.J.1004.2014.00561
Citation: LI Wan-Yi, WANG Peng, QIAO Hong. A Survey of Visual Attention Based Methods for Object Tracking. ACTA AUTOMATICA SINICA, 2014, 40(4): 561-576. doi: 10.3724/SP.J.1004.2014.00561

引入视觉注意机制的目标跟踪方法综述

doi: 10.3724/SP.J.1004.2014.00561
基金项目: 

国家自然科学基金(61210009,61100098,61379097)资助

详细信息
    作者简介:

    王鹏 中国科学院自动化研究所副研究员.2010 年获得中国科学院自动化研究所博士学位.主要研究方向为视觉检测与跟踪,视觉注意力模型.E-mail:peng wang@ia.ac.cn

A Survey of Visual Attention Based Methods for Object Tracking

Funds: 

Supported by National Natural Science Foundation of China (61210009, 61100098, 61379097)

  • 摘要: 视觉跟踪在无人飞行器、移动机器人、智能监控等领域有着广泛的应用,但由于目标外观和环境的变化,以及背景干扰等因素的存在,使得复杂场景下的鲁棒实时的目标跟踪成为一项极具挑战性的任务. 视觉注意是人类视觉信息处理过程中的一项重要的心理调节机制,在视觉注意的引导下,人类能够从众多的视觉信息中快速地选择那些最重要、最有用、与当前行为最相关的感兴趣的视觉信息,特别地,人类能够快速指向感兴趣的目标,从而可以轻松地实现对目标的稳定跟踪.因此,将视觉注意机制引入到复杂场景下的目标跟踪中,有利于实现更为稳定和接近于人类认知机制的视觉跟踪算法.本文旨在对引入了视觉注意机制的目标跟踪方法进行综述. 首先,介绍了视觉注意的基本概念及其代表性的计算模型;其次,对视觉注意与跟踪的内在关系进行了阐述;然后,对引入视觉注意机制的目标跟踪方法进行归纳、总结和分类,对代表性的方法进行介绍和分析;最后,对该类方法的特点和优势进行了讨论,并对未来的研究趋势进行了展望.
  • [1] Zhang S P, Yao H X, Sun X, Lu X S. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7): 1772-1788
    [2] Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13
    [3] Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4): 603-617(侯志强, 韩崇昭. 视觉跟踪技术综述. 自动化学报, 2006, 32(4): 603-617)
    [4] Maggio E, Cavallaro A. Video Tracking: Theory and Practice. West Sussex: Wiley, 2011
    [5] Zou Hai-Rong, Gong Zhen-Bang, Luo Jun. The status quo and prospect of tracking system of ground moving object by UAV. Journal of Astronautics, 2006, 27(z1): 233-236(邹海荣, 龚振邦, 罗均. 无人飞行器地面移动目标跟踪系统研究现状与展望. 宇航学报, 2006, 27(z1): 233-236)
    [6] Yoo S, Kim W, Kim C. Saliency combined particle filtering for aircraft tracking. Journal of Signal Processing Systems, 2013, doi: 10.1007/s11265-013-0803-x
    [7] Liu Wei-Feng, Chai Zhong, Wen Cheng-Lin. Multi-measurement target tracking by using random sampling approach. Acta Automatica Sinica, 2013, 39(2): 164-174(刘伟峰, 柴中, 文成林. 基于随机采样的多量测目标跟踪算法. 自动化学报, 2013, 39(2): 164-174)
    [8] Itti L, Koch C. Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2(3): 194-203
    [9] Frintrop S, Rome E, Christensen H I. Computational visual attention systems and their cognitive foundations: a survey. ACM Transactions on Applied Perception, 2010, 7(1): 1-39
    [10] Frintrop S. Computational visual attention. Computer Analysis of Human Behavior. London: Springer, 2011. 69101
    [11] Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207
    [12] Guo Ying-Chun, Yuan Hao-Jie, Wu Peng. Image saliency detection based on local and regional features. Acta Automatica Sinica, 2013, 39(8): 1214-1224(郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测. 自动化学报, 2013, 39(8): 1214-1224)
    [13] Ma Ru-Ning, Tu Xiao-Po, Ding Jun-Di, Yang Jing-Yu. To evaluate salience map towards popping out visual objects. Acta Automatica Sinica, 2012, 38(5): 870-875(马儒宁, 涂小坡, 丁军娣, 杨静宇. 视觉显著性凸显目标的评价. 自动化学报, 2012, 38(5): 870-875)
    [14] Navalpakkam V, Itti L. An integrated model of top-down and bottom-up attention for optimizing detection speed. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006. 2049-2056
    [15] Hu Zheng-Ping, Meng Peng-Quan. Graph presentation random walk salient object detection algorithm based on global isolation and local homogeneity. Acta Automatica Sinica, 2011, 37(10): 1279-1284(胡正平, 孟鹏权. 全局孤立性和局部同质性图表示的随机游走显著目标检测算法. 自动化学报, 2011, 37(10): 1279-1284)
    [16] Gao D S, Han S Y, Vasconcelos N. Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 989-1005
    [17] Feng Xin, Yang Dan, Zhang Ling. Saliency variation based quality assessment for packet-loss-impaired videos. Acta Automatica Sinica, 2011, 37(11): 1322-1331(冯欣, 杨丹, 张凌. 基于视觉注意力变化的网络丢包视频质量评估. 自动化学报, 2011, 37(11): 1322-1331)
    [18] Anderson J R. Cognitive Psychology and Its Implications. New York: Worth Publishers, 2004
    [19] Treisman A M, Gelade G. A feature-integration theory of attention. Cognitive Psychology, 1980, 12(1): 97-136
    [20] Wolfe J M. Guided Search 2.0. A revised model of visual search. Psychonomic Bulletin and Review, 1994, 1(2): 202238
    [21] Wolfe J M. Guided search 4.0. Integrated Models of Cognitive Systems, 2006, 44(3): 99-120
    [22] Wu Y, Lim J, Yang M H. Online object tracking: A benchmark. In: Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA: IEEE, 2013. 2411-2418
    [23] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
    [24] Walther D, Koch C. Modeling attention to salient proto-objects. Neural Networks, 2006, 19(9): 1395-1407
    [25] Frintrop S. VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. Berlin: Springer, 2006
    [26] Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems, NIPS 2006. New York: Neural Information Processing System Foundation, 2007. 545-552
    [27] Itti L, Dhavale N, Pighin F. Realistic avatar eye and head animation using a neurobiological model of visual attention. In: Proceedings of the SPIE's 48th Annual Meeting Optical Science and Technology. New York: International Society for Optics and Photonics, 2004. 64-78
    [28] Gao D, Vasconcelos N. Decision-theoretic saliency: computational principles, biological plausibility, and implications for neurophysiology and psychophysics. Neural Computation, 2009, 21(1): 239-271
    [29] Hou X, Zhang L. Saliency detection: a spectral residual approach. In: Proceedings of the 2007 Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
    [30] Guo C L, Ma Q, Zhang L M. Spatio-temporal Saliency detection using phase spectrum of quaternion Fourier transform. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008. 1-8
    [31] Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1597-1604
    [32] Li J, Levine M D, An X, Xu X, He H. Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996-1010
    [33] Li W Y, Wang P, Qiao H. Top-down spatiotemporal saliency detection using spectral Filtering. In: Proceedings of the 5th International Conference on Digital Image Processing (ICDIP 2013). Beijing, China: SPIE, 2013. 88782G88782G-5
    [34] Liu T, Sun J, Zheng N N, Tang X O, Shum H Y. Learning to detect a salient object. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
    [35] Mahadevan V, Vasconcelos N. Saliency-based discriminant tracking. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1007-1013
    [36] Yantis S. Multielement visual tracking: attention and perceptual organization. Cognitive Psychology, 1992, 24(3): 295-340
    [37] Allen R, Mcgeorge P, Pearson D, Milne A B. Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 2004, 18(3): 337-347
    [38] McKeever P, Pylyshyn Z. Nontarget Numerosity and Identity Maintenance with FINSTs: A Two Component Account of Multiple Target Tracking, Technical Report, Centre for Cognitive Science, University of Western Ontario, Canada, 1993
    [39] Sears C R, Pylyshyn Z W. Multiple object tracking and attentional processing. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Experimentale, 2000, 54(1): 1-14
    [40] Makovski T, Jiang Y V. Feature binding in attentive tracking of distinct objects. Visual Cognition, 2009, 17(1-2): 180 -194
    [41] Doran M M, Hoffman J E. The role of visual attention in multiple object tracking: evidence from ERPs. Attention, Perception, and Psychophysics, 2010, 72(1): 33-52
    [42] Mahadevan V, Vasconcelos N. Automatic initialization and tracking using attentional mechanisms. In: Proceedings of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2011). Colorado Springs, CO: IEEE, 2011. 15-20
    [43] Mahadevan V, Vasconcelos N. On the connections between saliency and tracking. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 1673-1681
    [44] Collins R T, Liu Y, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 16311643
    [45] Wang P, Qiao H. Online appearance model learning and generation for adaptive visual tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(2): 156-169
    [46] Ouerhani N, Hügli H. A model of dynamic visual attention for object tracking in natural image sequences. Computational Methods in Neural Modeling, 2003, 2686: 702-709.
    [47] Walther D, Edgington D R, Koch C. Detection and tracking of objects in underwater video. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2004. I-544-I-549
    [48] Veyret M, Maisel E. Attention-based target tracking for an augmented reality application. In: Proceedings of the 14th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2006. Vaclav Skala, Union Agency, 2006. 101-108
    [49] Li S, Lee M C. Fast visual tracking using motion saliency in video. In: Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, HI: IEEE, 2007. I1073-I1076
    [50] Liu H, Shi Y. A robust visual tracking based on selective attention shift. In: Proceedings of the 2009 IEEE Control Applications, (CCA) and Intelligent Control. New York, USA: IEEE, 2009. 1176-1179
    [51] Guo W, Xu C S, Ma S D, Xu M. Visual attention based motion object detection and trajectory tracking. In: Proceedings of the 11th Pacific Rim Conference on Multimedia. Berlin: Springer, 2010. 462-470
    [52] Lee S, Kim G J, Choi S. Real-time tracking of visually attended objects in virtual environments and its application to LOD. IEEE Transactions Visualization and Computer Graphics, 2009, 15(1): 6-19
    [53] Yang G, Liu H. Visual attention and multi-cue fusion based human motion tracking method. In: Proceedings of the 6th International Conference on Natural Computation (ICNC). Yantai, China: IEEE, 2010. 2044-2054
    [54] Ma L L, Cheng J, Liu J, Wang J Q, Lu H Q. Visual attention model based object tracking. In: Proceedings of the 2010 Advances in Multimedia Information Processing, and the 11th Pacific Rim Conference on Multimedia. Berlin: Springer, 2010. 483-493
    [55] Yu Y L, Mann G K I, Gosine R G. A single-object tracking method for robots using object-based visual attention. International Journal of Humanoid Robotics, 2012, 9(4): 50030
    [56] Zhu Ming-Qing, Wang Zhi-Ling, Chen Zong-Hai. Human visual intelligence and particle filter based robust object tracking algorithm. Control and Decision, 2012, 27(11): 17201724(朱明清, 王智灵, 陈宗海. 基于人类视觉智能和粒子滤波的鲁棒目标跟踪算法. 控制与决策, 2012, 27(11): 1720-1724)
    [57] Santana P, Correia L, Mendon\c{ca R, Alves N, Barata J. Tracking natural trails with swarm-based visual saliency. Journal of Field Robotics, 2013, 30(1): 64-86
    [58] Frintrop S, Kessel M. Most salient region tracking. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009. 1869-1874
    [59] Frintrop S, Künigs A, Hoeller F, Schulz D. Visual person tracking using a cognitive observation model. In: Proceedings of the 2009 ICRA Workshop on People Detection and Tracking. Kobe, Japan: IEEE, 2009
    [60] Frintrop S. General object tracking with a component-based target descriptor. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA). Anchorage, AK: IEEE, 2010. 4531-4536
    [61] Frintrop S, Künigs A, Hoeller F, Schulz D. A component-based approach to visual person tracking from a mobile platform. International Journal of Social Robotics, 2010, 2(1): 53-62
    [62] López M T, Fernóndez-Caballero A, Fernóndez M A, Mira J, Delgado A E. Visual surveillance by dynamic visual attention method. Pattern Recognition, 2006, 39(11): 2194-2211
    [63] Zhang S P, Yao H X, Liu S H. Robust visual tracking using feature-based visual attention. In: Proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 2010. 1150-1153
    [64] Chu J K, Li R H, Li Q Y, Wang H Q. A visual attention model for robot object tracking. International Journal of Automation and Computing, 2010, 7(1): 39-46
    [65] Mahadevan V, Vasconcelos N. Biologically inspired object tracking using center-surround saliency mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 541-554
    [66] Huang J W, Li Z N. Automatic detection of object of interest and tracking in active video. Journal of Signal Processing Systems, 2011, 65(1): 49-62
    [67] Sidibé D, Fofi D, Mériaudeau F. Using visual saliency for object tracking with particle filters. In: Proceedings of the 18th European Signal Processing Conference (EUSIPCO 2010), 2010. 1776-1780
    [68] Li Z D, Wang W H, Wang Y, Chen F, Wang Y. Visual tracking by proto-objects. Pattern Recognition, 2013, 46(8): 2187-2201
    [69] Yan J, Chen X, Zhu Q. Robust online tracking via adaptive samples selection with saliency detection. EURASIP Journal of Advances in Signal Processing, 2013, 2013(1): 1-11
    [70] Zhang G, Yuan Z J, Zheng N N, Sheng X D, Liu T. Visual saliency based object tracking. In: Proceedings of the 9th Asian Conference on Computer Vision (ACCV 2009). Berlin: Springer, 2009. 193-203
    [71] Zhang G, Yuan Z, Zheng N. Key object discovery and tracking based on context-aware saliency. International Journal of Advanced Robotic Systems, 2013, 10(5): 1-12
    [72] Li Y, Ma Y F, Zhang H J. Salient region detection and tracking in video. In: Proceedings of the 2003 International Conference on Multimedia and Expo. Baltimore, MD: IEEE, 2003. 269-272
    [73] Zhang Heng, Li Li-Chun, Li You, Yu Qi-Feng. Tracking method based on the significance weighted least square image matching. Opto-Electronic Engineering, 2008, 35(4): 23 -27(张恒, 李立春, 李由, 于起峰. 显著性加权最小二乘图像匹配跟踪方法. 光电工程, 2008, 35(4): 23-27)
    [74] Zhang Heng, Li You, Li Li-Chun, Yu Qi-Feng. A new significance weighted mean shift tracking method. Optical Technique, 2008, 191(3): 404-407(张恒, 李由, 李立春, 于起峰. 基于显著性加权的Mean Shift跟踪方法. 光学技术, 2008, 191(3): 404-407)
    [75] Yang M, Yuan J S, Wu Y. Spatial selection for attentional visual tracking. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
    [76] Fan J L, Wu Y, Dai S Y. Discriminative spatial attention for robust tracking. Computer Vision-ECCV 2010, Pt I. Berlin: Springer-Verlag, 2010. 480-493
    [77] Wang Q, Chen F, Xu W L. Saliency selection for robust visual tracking. In: Proceedings of the 17th IEEE International Conference on Image Processing (ICIP). Hong Kong, China: IEEE, 2010. 2785-2788
    [78] Zeng J H, Sun Y R. Real-time pedestrian tracking by visual attention and human knowledge learning. In: Proceedings of the 2010 IEEE International Conference on Progress in Informatics and Computing (PIC). Shanghai, China: IEEE, 2010. 345-348
    [79] Fan J L. Contextual saliency with an application to visual tracking. In: Proceedings of the 4th International Congress on Image and Signal Processing (CISP 2011). Shanghai, China: IEEE, 2011. 1416-1419
    [80] Li H L, Ngan K N. Saliency model-based face segmentation and tracking in head-and-shoulder video sequences. Journal of Visual Communication and Image Representation, 2008, 19(5): 320-333
    [81] Liu H, He H J. A salient feature and scene semantics based attention model for human tracking on mobile robots. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010). Anchorage, AK: IEEE, 2010. 4545-4552
    [82] Borji A, Frintrop S. Learning context-based feature descriptors for object tracking. In: Proceedings of the 5th ACM/ IEEE International Conference on Human-Robot Interaction. Osaka: IEEE, 2010. 79-80
    [83] Borji A, Frintrop S, Sihite D N, Itti L. Adaptive object tracking by learning background context. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Providence, RI: IEEE, 2012. 23-30
    [84] Liu T, Yuan Z J, Sun J, Wang J D, Zheng N, Tang X. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367
    [85] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island: IEEE, 2000. 142-149
  • 加载中
计量
  • 文章访问数:  3123
  • HTML全文浏览量:  140
  • PDF下载量:  3099
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-26
  • 修回日期:  2013-09-22
  • 刊出日期:  2014-04-20

目录

    /

    返回文章
    返回