2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶奇异系统容许性的充分必要条件

余瑶 焦壮 孙长银

余瑶, 焦壮, 孙长银. 分数阶奇异系统容许性的充分必要条件. 自动化学报, 2013, 39(12): 2160-2163. doi: 10.3724/SP.J.1004.2013.02160
引用本文: 余瑶, 焦壮, 孙长银. 分数阶奇异系统容许性的充分必要条件. 自动化学报, 2013, 39(12): 2160-2163. doi: 10.3724/SP.J.1004.2013.02160
YU Yao, JIAO Zhuang, SUN Chang-Yin. Sufficient and Necessary Condition of Admissibility for Fractional-order Singular System. ACTA AUTOMATICA SINICA, 2013, 39(12): 2160-2163. doi: 10.3724/SP.J.1004.2013.02160
Citation: YU Yao, JIAO Zhuang, SUN Chang-Yin. Sufficient and Necessary Condition of Admissibility for Fractional-order Singular System. ACTA AUTOMATICA SINICA, 2013, 39(12): 2160-2163. doi: 10.3724/SP.J.1004.2013.02160

分数阶奇异系统容许性的充分必要条件

doi: 10.3724/SP.J.1004.2013.02160

Sufficient and Necessary Condition of Admissibility for Fractional-order Singular System

Funds: 

Supported by National Outstanding Youth Science Foundation (61125306), Major Research Plan of National Natural Science Foundation of China (91016004), National Natural Science Foun-dation (61203071), Fundamental Research Funds for the Central Universities (FRF-TP-13-017A), and Specialized Research Fund for the Doctoral Program of Higher Education (20130006120027, 20110092110020)

More Information
    Corresponding author: SUN Chang-Yin
  • 摘要: 探讨了阶数在(0,1)区间的分数阶奇异系统的容许性条件. 文中首先给出了正则性,无脉冲性和容许性的定义,然后给出了分数阶奇异系统容许性的充分必要条件,最后通过数值仿真的例子来说明我们给出的容许性条件.
  • [1] Oldham K B, Spanier J. The Fractional Calculus. New York and London: Academic Press, 1974. 69-83
    [2] Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999. 38-52
    [3] Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 33(2): 253-265
    [4] McAdams E T, Lackermeier A, McLaughlin J A, Macken D, Jossinet J. The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosensors and Bioelectronics, 1995, 10(1-2): 67-74
    [5] Gaul L, Klein P, Kemple S. Damping description involving fractional operators. Mechanical Systems and Signal Processing, 1991, 5(2): 81-88
    [6] Makris N, Constantinou M C. Fractional-derivative Maxwell model for viscous dampers. Journal of Structural Engineering, 1991, 117(9): 2708-2724
    [7] Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 304-311
    [8] Clerc J P, Tremblay A M S, Albinet G, Mitescu C D. a.c. response of fractal networks. Journal de Physique Letters, 1984, 45: 913-924
    [9] Gao Xin, Yu Jue-Bang. Synchronization of two coupled fractional-order chaotic oscillators. Chaos, Solitons and Fractals, 2005, 26(1): 141-145
    [10] Monje C A, Chen Y Q, Vinagre B M, Xue D Y, Feliu-Batlle V. Fractional-order Systems and Controls: Fundamentals and Applications. London: Springer-Verlag, 2010. 37-78
    [11] Gao Zhe, Liao Xiao-Zhong. A stability criterion for linear fractional order systems in frequency domain. Acta Automatica Sinica, 2011, 37(11): 1387-1394 (in Chinese)
    [12] Guo T L. Controllability and observability of impulsive fractional linear time-invariant system. Computers & Mathematics with Applications, 2012, 64(10): 3171-3182
    [13] Podlubny I. Fractional-order systems and PIλ Dμ controllers. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214
    [14] Oustaloup A, Mathieu B, Lanusse P. The CRONE control of resonant plants: application to a flexible transmission. European Journal of Control, 1995, 1: 113-121
    [15] Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11): 2985-2988
    [16] Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6): 1294-1299
    [17] Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0 IEEE Transactions on Automatic Control, 2010, 55(1): 152-158
    [18] Hwang C, Cheng Y C. A numerical algorithm for stability testing of fractional delay systems. Automatica, 2006, 42(5): 825-831
    [19] Gao Z, Liao X Z. Robust stability criterion of fractional-order functions for interval fractional-order systems. IET Control Theory and Applications, 2013, 7(1): 60-67
    [20] Ding Y S, Wang Z D, Ye H P. Optimal control of a fractional-order HIV-immune system with memory. IEEE Transactions on Control Systems Technology, 2012, 20(3): 763-769
    [21] Zhu Cheng-Xiang, Zou Yun. Simultaneous identification of fractional-order system structure and order and parameters based on alternately transforming condensed information matrix. Acta Automatica Sinica, 2012, 38(8): 1280-1287 (in Chinese)
    [22] Gabano J D, Poinot T, Kanoun H. Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory and Applications, 2011, 5(7): 889-899
    [23] Jin Y, Chen Y Q, Xue D Y. Time-constant robust analysis of a fractional order[proportional derivative] controller. IET Control Theory and Applications, 2011, 5(1): 164-172
    [24] Gao Zhe, Liao Xiao-Zhong. Robust stability criteria for interval fractional-order systems: the 0 Acta Automatica Sinica, 2012, 38(2): 175-182 (in Chinese)
    [25] Dai L Y. Singular Control Systems. Berlin: Springer-Verlag, 1989. 79-98
    [26] Lewis F L. A survey of linear singular systems. Circuits, Systems and Signal Processing, 1986, 5(1): 3-36
    [27] Fang C H, Chang F R. Analysis of stability robustness for generalized state-space systems with structured perturbations. Systems and Control Letters, 1993, 21(2): 109-114
    [28] Fang C H, Lee L, Chang F R. Robust control analysis and design for discrete-time singular systems. Automatica, 1994, 30(11): 1741-1750
    [29] N'Doye I, Zasadzinski M, Darouach M, Radhy N E. Regularization and stabilization of singular fractional-order systems. In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain: IFAC, 2010. 145-149
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览量:  86
  • PDF下载量:  1802
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-12
  • 修回日期:  2013-05-13
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回