2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去除椒盐噪声的交替方向法

薛倩 杨程屹 王化祥

薛倩, 杨程屹, 王化祥. 去除椒盐噪声的交替方向法. 自动化学报, 2013, 39(12): 2071-2076. doi: 10.3724/SP.J.1004.2013.02071
引用本文: 薛倩, 杨程屹, 王化祥. 去除椒盐噪声的交替方向法. 自动化学报, 2013, 39(12): 2071-2076. doi: 10.3724/SP.J.1004.2013.02071
XUE Qian, YANG Cheng-Yi, WANG Hua-Xiang. Alternating Direction Method for Salt-and-pepper Denoising. ACTA AUTOMATICA SINICA, 2013, 39(12): 2071-2076. doi: 10.3724/SP.J.1004.2013.02071
Citation: XUE Qian, YANG Cheng-Yi, WANG Hua-Xiang. Alternating Direction Method for Salt-and-pepper Denoising. ACTA AUTOMATICA SINICA, 2013, 39(12): 2071-2076. doi: 10.3724/SP.J.1004.2013.02071

去除椒盐噪声的交替方向法

doi: 10.3724/SP.J.1004.2013.02071
基金项目: 

国家自然科学基金(61102097,61102096),天津市科技支撑计划项目(11ZCGHHZ00700),天津市自然科学基金(11JCYBJC06900)资助

详细信息
    作者简介:

    薛倩 中国民航大学航空自动化学院讲师. 主要研究方向为计算机层析成像技术. 本文通信作者.E-mail:xueqian@tju.edu.cn

Alternating Direction Method for Salt-and-pepper Denoising

Funds: 

Supported by National Natural Science Foundation of China (61102097, 61102096), Science and Technology Support Program of Tianjin (11ZCGHHZ00700), and Natural Science Foundation of Tianjin (11JCYBJC06900)

  • 摘要: 传统图像去噪法基于有用信息和噪声频率特性的差别实现去噪,实际中,有用信息和噪声在频带上往往存在重叠,因此,传统去噪法在抑制噪声的同时,往往损失了细节信息,使图像变模糊. 本文引入稀疏与低秩矩阵分解模型描述图像去噪问题,基于该模型,采用交替方向法(Alternating direction method,ADM)得到复原图像. 实验证明该方法比常用的中值滤波法更有效地抑制了椒盐噪声,同时更好地保持了原始图像的细节信息.
  • [1] Yang Hui-Xian, Wang Xu-Si, Xie Peng-He, Leng Ai-Lian, Peng You. Infrared image denoising based on improved threshold and inter-SCAle correlations of wavelet transform. Acta Automatica Sinica, 2011, 37(10): 1167-1174(杨恢先, 王绪四, 谢鹏鹤, 冷爱莲, 彭友. 改进阈值与尺度间相关的小波红外图像去噪. 自动化学报, 2011, 37(10): 1167-1174)
    [2] Wang Jian-Ying, Yin Zhong-Ke, Zhang Chun-Mei. Sparse Decomposition and Preliminary Application of Signal and Image. Chengdu: Southwest Jiaotong University Press, 2006. 140-141(王建英, 尹忠科, 张春梅. 信号与图像的稀疏分解及初步应用. 成都: 西南交通大学出版社, 2006. 140-141)
    [3] Yin Zhong-Ke, Xie Mei, Wang Jian-Ying. Image denoising based on its sparse decomposition. Journal of University of Electronic Science and Technology of China, 2007, 35(6): 876-878(尹忠科, 解梅, 王建英. 基于稀疏分解的图像去噪. 电子科技大学学报, 2007, 35(6): 876-878)
    [4] Zhao Rui-Zhen, Liu Xiao-Yu, Li Ching-Chung, Sclabassi R J, Sun Min-Gui. Wavelet domain image denoising via sparse representation. Scientia Sinica Informations, 2010, 40(1): 33-44(赵瑞珍, 刘晓宇, Li Ching-Chung, Sclabassi R J, 孙民贵. 基于稀疏表示的小波去噪. 中国科学: 信息科学, 2010, 40(1): 33-44)
    [5] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
    [6] Candés E, Li X D, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM, 2011, 58(3): 1-39
    [7] Donoho D L, Tsaig Y. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571
    [8] Tibshirani R. Regression shrinkage and selection via the LASSO: a retrospective. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 2011, 73(3): 273-282
    [9] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
    [10] Yang J F, Zhang Y. Alternating direction algorithms for l1-problems in compressive sensing. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278
    [11] Chandrasekara V, Sanghavi S, Parrilo P A, Willsky A S. Sparse and low-rank matrix decompositions. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing. Monticello, USA: IEEE, 2009. 962-967
    [12] Candes E J, Tao T. The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080
    [13] Chandrasekaran V, Sanghavi S, Parrilo P A, Willsky A S. Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 2011, 21(2): 572-596
    [14] Bertsekas D P. Constrained Optimization and Lagrange Multiplier Methods. New York: Academic Press, 1982. 10-350
    [15] Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing, 2011, 20(3): 681-695
    [16] Schechter M. A subgradient duality theorem. Journal of Mathematical Analysis and Applications, 1977, 61(3): 850-855
    [17] Schechter M. More on subgradient duality. Journal of Mathematical Analysis and Applications, 1979, 71(1): 251-262
    [18] Ma S Q, Goldfarb D, Chen L F. Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, 2011, 128(1-2): 321-353
    [19] He B S, Yang H. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Operations Research Letters, 1998, 23(3-5): 151-161
    [20] He B S, Liao L Z, Han D R, Yang H. A new inexact alternating directions method for monotone variational inequalities. Mathematical Programming, 2002, 92(1): 103-118
    [21] Ye C H, Yuan X M. A descent method for structured monotone variational inequalities. Optimization Methods and Software, 2007, 22(2): 329-338
  • 加载中
计量
  • 文章访问数:  1965
  • HTML全文浏览量:  88
  • PDF下载量:  2025
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-03
  • 修回日期:  2012-08-31
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回