2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因调控网络的控制:机遇与挑战

王沛 吕金虎

王沛, 吕金虎. 基因调控网络的控制:机遇与挑战. 自动化学报, 2013, 39(12): 1969-1979. doi: 10.3724/SP.J.1004.2013.01969
引用本文: 王沛, 吕金虎. 基因调控网络的控制:机遇与挑战. 自动化学报, 2013, 39(12): 1969-1979. doi: 10.3724/SP.J.1004.2013.01969
WANG Pei, LV Jin-Hu. Control of Genetic Regulatory Networks:Opportunities and Challenges. ACTA AUTOMATICA SINICA, 2013, 39(12): 1969-1979. doi: 10.3724/SP.J.1004.2013.01969
Citation: WANG Pei, LV Jin-Hu. Control of Genetic Regulatory Networks:Opportunities and Challenges. ACTA AUTOMATICA SINICA, 2013, 39(12): 1969-1979. doi: 10.3724/SP.J.1004.2013.01969

基因调控网络的控制:机遇与挑战

doi: 10.3724/SP.J.1004.2013.01969
基金项目: 

国家自然科学基金(61304151,61025017,11072254,11105040),河南大学校内自然科学基金(2012YBZR007)资助

详细信息
    作者简介:

    王沛 博士,河南大学数学与信息科学学院讲师. 主要研究方向为系统生物学,复杂系统与复杂网络.E-mail:wp0307@126.com

Control of Genetic Regulatory Networks:Opportunities and Challenges

Funds: 

Supported by National Natural Science Foundation of China (61304151, 61025017, 11072254, 11105040) and Scientific Research Foundation of Henan University (2012YBZR007)

  • 摘要: 众所周知,基因调控网络(Genetic regulatory networks,GRNs)是一类基本且重要的生物网络.基因调控网络可以通过输入、噪声、参数以及正负反馈等进行功能的鲁棒性调节与控制.本文首先简要回顾了基因调控网络控制方面的若干研究进展,然后提出了一些与控制相关的基因调控网络的基本科学问题.基因调控网络的控制以生命科学为背景,以控制理论为理论基础.过去几十年,控制论的基本思想与方法逐步渗透到基因调控网络的研究中.同时,来源于生命科学的控制问题也为我们提出了新的机遇与挑战.基因调控网络的控制对生命科学中困扰人类的基本问题,如延长寿命、治愈癌症、糖尿病等顽疾有着非常重要的现实意义.此外,基因调控网络控制研究对合成生物学、网络医学、个性化医学等相关学科的发展具有潜在的应用价值.
  • [1] Hood L. Systems biology: integrating technology, biology, and computation. Mechanisms of Ageing and Development, 2003, 124(1): 9-16
    [2] Hood L, Health J R, Phelps M E, Lin B Y. Systems biology and new technologies enable predictive and preventative medicine. Science, 2004, 306(5696): 640-643
    [3] Kitano H. Systems biology: a brief overview. Science, 2002, 295(5560): 1662-1664
    [4] Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. London: Chapman and Hall, CRC, 2006
    [5] Benner S. Biology from the bottom up. Nature, 2008, 452(7188): 692-694
    [6] Kirschner M W. The meaning of systems biology. Cell, 2005, 121(4): 503-504
    [7] Bruggeman F J, Westerhoff H V. The nature of systems biology. Trends in Microbiology, 2007, 15(1): 45-50
    [8] Mendoza E R. Systems biology: its past, present and potential. Philippine Science Letter, 2009, 2(1): 16-34
    [9] Sontag E D. Some new directions in control theory inspired by systems biology. Systems Biology, 2004, 1(1): 9-18
    [10] McAdams H, Shapiro L. Circuit simulation of genetic networks. Science, 1995, 269(5224): 650-656
    [11] Mandal S, Sarpeshkar R. Circuit models of stochastic genetic networks. In: Proceedings of the 2009 IEEE Biomedical Circuits and Systems Conference. Beijing, China: IEEE, 2009. 109-112
    [12] Chen L N, Wang R S, Zhang X S. Biomolecular Networks: Methods and Applications in Systems Biology. Hoboken, New Jersey: Wiley, 2009
    [13] Lei Jin-Zhi. Systems Biology-Modelling, Analysis, Simulation. Shanghai: Shanghai Science and Technology Press, 2010 (雷锦志. 系统生物学: 建模, 分析, 模拟. 上海: 上海科学技术出版社, 2010)
    [14] Zhou Tian-Shou. The Stochastic Dynamics of Biological Systems. Beijing: Science Press, 2009(周天寿. 生物系统的随机动力学. 北京: 科学出版社, 2009)
    [15] Liu Zeng-Rong, Wang Rui-Qi, Yang Ling, Zhao Xing-Ming. Construction and Analysis of Biomolecular Networks. Beijing: Science Press, 2012(刘曾荣, 王瑞琦, 杨凌, 赵兴明. 生物分子网络的构建和分析. 北京: 科学出版社, 2012)
    [16] Wang Pei. Modeling and Dynamical Behaviors of Several Circuits in Genetic Regulatory Networks[Ph.D. dissertation], Wuhan University, China, 2012(王沛. 几类基因调控网络环路的建模及动力学分析[博士学位论文], 武汉大学, 中国, 2012)
    [17] Barabási A, Gulbahce N, LoSCAlzo J. Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 2011, 12(1): 56-68
    [18] Smolen P, Baxter D A, Byrne J H. Modeling transcriptional control in gene networks-methods, recent results, and future directions. Bulletin of Mathematical Biology, 2000, 62(2): 247-292
    [19] Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 1961, 3(3): 318-356
    [20] Monod J, Changeux J P, Jacob F. Allosteric proteins and cellular control systems. Journal of Molecular Biology, 1963, 6(4): 306-329
    [21] Wiener N, Schadé J P. Progress in Biocybernetics. New York: Elsevier Publishing Company, 1966
    [22] Gu Fan-Ji. Biocybernetics. Chinese Journal of Nature, 1984, 7(10): 757-760(顾凡及. 生物控制论. 自然杂志, 1984, 7(10): 757-760)
    [23] Wang P, Lv J H, Ogorzalek M J. Global relative parameter sensitivities of the feed-forward loops in genetic networks. Neurocomputing, 2012, 78(1): 155-165
    [24] Wang P, Lv J H, Zhang Y H, Ogorzalek M J. Global relative input-output sensitivities of the feed-forward loops in genetic networks. In: Proceedings of the 31st Chinese Control Conference. Hefei, China, USA: IEEE, 2012. 7376-7381
    [25] de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology, 2002, 9(1): 67-103
    [26] Li F T, Long T, Liu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(14): 4781-4786
    [27] Wang G Y, Du C H, Chen H, Simha R, Rong Y W, Xiao Y, Zeng C. Process-based network decomposition reveals backbone motif structure. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10478-10483
    [28] Davidich M I, Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One, 2008, 3(2): e1672
    [29] Máayan A, Jenkins S L, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, Eungdamrong N J, Weng G, Ram P T, Rice J J, Kershenbaum A, Stolovitzky G A, Blitzer R D, Iyengar R. Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science, 2005, 309(5737): 1078-1083
    [30] Glass L, Kauffman S A. The logical analysis of continuous, non-linear biochemical control networks. Journal of Theoretical Biology, 1973, 39(1): 103-129
    [31] Glass L, Pasternack J S. Stable oscillations in mathematical models of biological control systems. Journal of Mathematical Biology, 1978, 6(3): 207-223
    [32] Wu J L, Voit E. Hybrid modeling in biochemical systems theory by means of functional petri nets. Journal of Bioinformatics and Computational Biology, 2009, 7(1): 107-134
    [33] Singhania R, Sramkoski R M, Jacobberger J W, Tyson J J. A hybrid model of mammalian cell cycle regulation. PLoS Computational Biology, 2011, 7(2): e1001077
    [34] Bornholdt S. Less is more in modeling large genetic networks. Science, 2005, 310(5747): 449-451
    [35] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science, 2002, 298(5594): 824-827
    [36] Shen-Orr S, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 2002, 31: 64-68
    [37] Turcotte M, Garcia-Ojalvo J, SÜel G M. A genetic timer through noise-induced stabilization of an unstable state. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 15732-15737
    [38] Ghosh B, Karmakar R, Bose I. Noise characteristics of feed forward loops. Physical Biology, 2005, 2(1): 36-45
    [39] Tsai T Y, Choi Y S, Ma W Z, Pomerening J R, Tang C, Ferrell J E Jr. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 2008, 321(5885): 126-129
    [40] Stricker J, Cookson S, Bennett M R, Mather W H, Tsimring L S, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456(7221): 516-519
    [41] Kim J R, Yoon Y, Cho K H. Coupled feedback loops form dynamic motifs of cellular networks. Biophysical Journal, 2008, 94(2): 359-365
    [42] Wang P, LÜ J H, Zhang Y H, Ogorzalek M J. Intrinsic noise induced state transition in coupled positive and negative feedback genetic circuit. In: Proceedings of the 2011 IEEE International Conference on Systems Biology. Zhuhai, China, USA: IEEE, 2011. 356-361
    [43] Zhang Z Y, Ye W M, Qian Y, Zheng Z G, Huang X H, Hu G. Chaotic motifs in gene regulatory networks. PLoS One, 2012, 7(7): e39355
    [44] Marucci L, Barton D A W, Cantone I, Ricci M A, Cosma M P, Santini S, di Bernardo D, di Bernardo M. How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch. PLoS One, 2009, 4(12): e8083
    [45] Gao S, Hartman J L I V, Carter J L, Hessner M J, Wang X. Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling. BMC Systems Biology, 2010, 4: 167
    [46] Wu X, Wang W, Zheng W X. Inferring topologies of complex networks with hidden variables. Physical Review E, 2012, 86: 046106
    [47] Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11980-11985
    [48] Alon U. Network motifs: theory and experimental approaches. Nature Reviews Genetics, 2007, 8(6): 450-461
    [49] Mangan S, Zaslaver A, Alon U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. Journal of Molecular Biology, 2003, 334(2): 197- 204
    [50] Kalir S, Mangan S, Alon U. A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Molecular Systems Biology, 2005, 1: 0006
    [51] Kittisopikul M, SÜel G M. Biological role of noise encoded in a genetic network motif. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 13300-13305
    [52] Goentoro L, Shoval O, Kirschner M W, Alon U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Molecular Cell, 2009, 36(5): 894-899
    [53] Prill R J, Iglesias P A, Levchenko A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biology, 2005, 3: e343
    [54] Ma W Z, Trusina A, EI-Samad H, Lim W A, Tang C. Defining network topologies that can achieve biochemical adaptation. Cell, 2009, 138(4): 760-773
    [55] Sontag E D. Remarks on feedforward circuits, adaptation, and pulse memory. IET Systems Biology, 2010, 4(1): 39-51
    [56] Chen K C, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson J J. Kinetic analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of the Cell, 2000, 11(1): 369-391
    [57] Chen K C, Calzone L, Csikasz-Nagy A, Cross F R, Novak B, Tyson J J. Integrative analysis of cell cycle control in budding yeast. Molecular Biology of the Cell, 2004, 15(8): 3841-3862
    [58] Bentele M, Eils R. Systems biology of apoptosis. Topics in Current Genetics, Vol. 13, Systems Biology: Definitions and Perspectives. Berlin: Springer-Verlag, 2005
    [59] Ingalls B. Sensitivity analysis: from model parameters to system behaviour. Essays in Biochemistry, 2008, 45(1): 177 -193
    [60] Khalil H K. Nonlinear Systems (3rd edition). Beijing: Publishing House of Electronics Industry, 2001. 99-102
    [61] Gershenfeld N. The Nature of Mathematical Modeling. Cambridge: Cambridge University Press, 1999
    [62] Mendes P, Kell D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics, 1998, 14(10): 869-883
    [63] Ye Wei-Ming, Lv Bin-Bin, Zhao Chen, Di Zeng-Ru. Control of few node genetic regulatory networks. Acta Physica Sinica, 2013, 62(1): 010507(叶纬明, 吕彬彬, 赵琛, 狄增如. 少节点基因调控网络的控制. 物理学报, 2013, 62(1): 010507)
    [64] Yuan Zhan-Jiang, Zhang Jia-Jun, Zhou Tian-Shou. Functions of gene autoregulatory circuits. Acta Biophysica Sinica, 2010, 26(6): 457-471(苑占江, 张家军, 周天寿. 基因自调控环路的功能. 生物物理学报, 2010, 26(6): 457-471)
    [65] Freund J A, Pöschel T. Stochastic Processes in Physics, Chemistry, and Biology. Berlin: Springer-Verlag, 2000
    [66] Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339-342
    [67] Wan L, Zhou Q H, Wang P. Ultimate boundedness of stochastic Hopfield neural networks with time-varying delays. Neurocomputing, 2011, 74(17): 2967-2971
    [68] Wan L, Zhou Q H, Wang P. Ultimate boundedness and an attractor for stochastic Hopfield neural networks with time-varying delays. Nonlinear Analysis: Real World Applications, 2012, 13(2): 953-958
    [69] Zhou T S, Zhang J J, Yuan Z J, Xu A L. External stimuli mediate collective rhythms: artificial control strategies. PLoS One, 2007, 2: e231
    [70] Kuznetsov A, Kaern M, Kopell N. Synchrony in a population of hysteresis-based genetic oscillators. SIAM Journal on Applied Mathematics, 2004, 65(2): 392-425
    [71] Wan L, Zhou Q H, Wang P. Weak attractor for stochastic Cohen-Grossberg neural networks with delays. Nonlinear Dynamics, 2012, 67(3): 1753-1759
    [72] Raser J M, O'Shea E K. Control of stochasticity in Eukaryotic gene expression. Science, 2004, 304(5678): 1811-1814
    [73] Nakao H, Arai K, Kawamura Y. Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillations. Physical Review Letters, 2007, 98(18): 184101
    [74] Xiong W, Ferrell J E Jr. A positive-feedback-based bistable ''memory module'' that governs a cell fate decision. Nature, 2003, 426(6965): 460-465
    [75] Tian T, Burrage K. Stochastic models for regulatory networks of the genetic toggle switch. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(22): 8372-8377
    [76] Wang J W, Zhang J J, Yuan Z J, Zhou T S. Noise-induced switches in network systems of the genetic toggle switch. BMC Systems Biology, 2007, 1(1): 50
    [77] Zhang Jia-Jun, Wang Jun-Wei, Yuan Zhan-Jiang, Zhou Tian-Shou. Noise-induced synchronized switching of a multicellular system. Progress in Biochemistry and Biophysics, 2008, 35(8): 929-939(张家军, 王军威, 苑占江, 周天寿. 噪声诱导多细胞系统的同步切换. 生物化学与生物物理进展, 2008, 35(8): 929-939)
    [78] Loinger A, Lipshtat A, Balaban N Q, Biham O. Stochastic simulations of genetic switch systems. Physical Review E, 2007, 75(2): 021904
    [79] Rosenfeld N, Young J W, Alon U, Swain P S, Elowitz M B. Gene regulation at the single-cell level. Science, 2005, 307(5717): 1962-1965
    [80] Shahrezaei V, Ollivier J F, Swain P S. Colored extrinsic fluctuations and stochastic gene expression. Molecular Systems Biology, 2008, 4: 196
    [81] Wang P, Lv J H, Maciej O J. Synchronized switching induced by colored noise in the genetic toggle switch systems coupled by quorum sensing mechanism. In: Proceedings of the 30th Chinese Control Conference. Yantai, China, USA: IEEE, 2011. 6605-6609
    [82] Plahte E, Mestl T, Omholt S W. Feedback loops, stability and multistationarity in dynamical systems. Journal of Biological Systems, 1995, 3(2): 409-414
    [83] Snoussi E H. Necessary conditions for multistationarity and stable periodicity. Journal of Biological Systems, 1998, 6(1): 3-9
    [84] Shibata T, Fujimoto K. Noisy signal amplification in ultrasensitive signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 331-336
    [85] Hornung G, Barkai N. Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Computational Biology, 2008, 4: e8
    [86] Tian X J, Zhang X P, Liu F, Wang W. Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Physical Review E, 2009, 80: 011926
    [87] Hasty J, Dolnik M, Rottscháfer V, Collins J J. Synthetic gene network for entraining and amplifying cellular oscillations. Physical Review Letters, 2002, 88: 148101
    [88] Song H, Smolen P, Av-Ron E, Baxter D A, Byrne J H. Dynamics of a minimal model of interlocked positive and negative feedback loops of transcriptional regulation by cAMP-response element binding proteins. Biophysical Journal, 2007, 92(10): 3407-3424
    [89] Wang P, Lv J, Wan L, Chen Y. A stochastic simulation algorithm for biochemical reactions with delays. In: Proceedings of the 2013 IEEE International Conference on Systems Biology. Huangshan, China, USA: IEEE, 2013. 109-114
    [90] Brandman O, Ferrell J E Jr, Li R, Meyer T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science, 2005, 310(5747): 496-498
    [91] Zhang X P, Cheng Z, Liu F, Wang W. Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling. Physical Review E, 2007, 76: 031924
    [92] Sriram K, Soliman S, Fages F. Dynamics of the interlocked positive feedback loops explaining the robust epigenetic switching in Candida albicans. Journal of Theoretical Biology, 2009, 258(1): 71-88
    [93] Smolen P, Baxter D A, Byrne J H. Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Physical Review E, 2009, 79: 031902
    [94] Wang P, Zhang Y, Lv J, Yu X. Functional characteristics of additional positive feedback in genetic circuits. Communications in Nonlinear Science and Numerical Simulation, submitted, 2013
    [95] Kobayashi Y, Shibata T, Kuramoto Y, Mikhailov A S. Robust network clocks: design of genetic oscillators as a complex combinatorial optimization problem. Physical Review E, 2011, 83: 060901
    [96] Mondragón-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J. Entrainment of a population of synthetic genetic oscillators. Science, 2011, 333(6074): 1315-1319
    [97] Zhao Yan, Wang Ting-Huai. Cybernetics and entropy theory in the biofeedback therapy. Chinese Journal of Practical Nervous Diseases, 2009, 12(13): 41-44(赵妍, 王庭槐. 生物反馈治疗中的控制论和熵原理. 中国实用神经疾病杂志, 2009, 12(13): 41-44)
    [98] Russo G, Slotine J J E. Global convergence of quorum-sensing networks. Physical Review E, 2010, 82: 041919
    [99] Stankovski T, Duggento A, McClintock P V E, Stefanovska A. Inference of time-evolving coupled dynamical systems in the presence of noise. Physical Review Letters, 2012, 109: 024101
    [100] Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312-321(陈关荣. 复杂动态网络环境下控制理论遇到的问题与挑战. 自动化学报, 2013, 39(4): 312-321)
    [101] Lu Bao-Yun, Yue Hong, Developing objective sensitivity analysis of periodic systems: case studies of biological oscillators. Acta Automatica Sinica, 2012, 38(7): 1065-1073
    [102] Furusawa C, Kaneko K. Chaotic expression dynamics implies pluripotency: when theory and experiment meet. Biology Direct, 2009, 4: 17
    [103] Wang P, Lu R Q, Chen Y, Wu X Q. Hybrid modelling of the general middle-sized genetic regulatory networks. In: Proceedings of the 2013 IEEE International Symposium on Circuits and Systems. Beijing, China, USA: IEEE, 2013. 2103-2106
    [104] He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 2004, 5(7): 522-531
    [105] Pan Wei. Analysis and Control of Genetic Regulatory Networks[Master dissertation], University of Science and Technology of China, China, 2011(潘为. 基因调控网络的分析与控制[硕士学位论文], 中国科学技术大学, 中国, 2011)
    [106] Cheng A A, Lu T K. Synthetic biology: an emerging engineering discipline. Annual Review of Biomedical Engineering, 2012, 14: 155-178
  • 加载中
计量
  • 文章访问数:  1782
  • HTML全文浏览量:  69
  • PDF下载量:  3153
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-11
  • 修回日期:  2013-09-22
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回