2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稳健联合分块对角化的卷积盲分离

汤辉 王殊

汤辉, 王殊. 基于稳健联合分块对角化的卷积盲分离. 自动化学报, 2013, 39(9): 1502-1510. doi: 10.3724/SP.J.1004.2013.01502
引用本文: 汤辉, 王殊. 基于稳健联合分块对角化的卷积盲分离. 自动化学报, 2013, 39(9): 1502-1510. doi: 10.3724/SP.J.1004.2013.01502
TANG Hui, WANG Shu. Robust Joint Block Diagonalization Based Convolutive Blind Source Separation. ACTA AUTOMATICA SINICA, 2013, 39(9): 1502-1510. doi: 10.3724/SP.J.1004.2013.01502
Citation: TANG Hui, WANG Shu. Robust Joint Block Diagonalization Based Convolutive Blind Source Separation. ACTA AUTOMATICA SINICA, 2013, 39(9): 1502-1510. doi: 10.3724/SP.J.1004.2013.01502

基于稳健联合分块对角化的卷积盲分离

doi: 10.3724/SP.J.1004.2013.01502
详细信息
    作者简介:

    汤辉 华中科技大学电信系博士研究生.2006年获得华中科技大学电信系学士学位.主要研究方向为扩频信号检测和盲信号处理.E-mail:balatanghui@163.com

Robust Joint Block Diagonalization Based Convolutive Blind Source Separation

  • 摘要: 针对卷积盲分离问题,提出一种新的矩阵联合分块对角化(Joint block diagonalization, JBD)算法. 现有的迭代非正交联合分块对角化算法都存在不收敛的情况,本文利用分离矩阵的特殊结构确保其可逆性,使得算法的迭代过程稳定. 在已知矩阵分块结构的条件下,首先,将卷积盲分离模型写成瞬时形式,并说明其满足联合分块对角化结构; 然后,提出联合分块对角化的代价函数,依据代价函数的最小化等价于矩阵中每个分块的范数最小化, 将整个分离矩阵的迭代更新转化成每个分块的迭代更新;最后,利用最小化条件得到迭代算法. 实数和复数两种情况下的算法都进行了推导.基本实验验证了新算法在不同条件下的性能; 仿真实验中对在时域和频域都重叠的信号的卷积混合进行盲分离,实验结果验证了新算法具有更好的分离性能和更稳定的分离能力.
  • [1] Yang Zhu-Qing, Li Yong, Hu De-Wen. Independent component analysis: a survey. Acta Automation Sinica, 2002, 28(5): 762-772(杨竹青, 李勇, 胡德文. 独立成分分析方法综述. 自动化学报, 2002, 28(5): 762-772)
    [2] Castella M, Bianchi P, Chevereuil A, Prequet J C. A blind source separation framework for detecting CPM sources mixed by a convolutive MIMO filter. Signal Processing, 2006, 86(8): 1950-1967
    [3] He Z S, Xie S L, Ding S X, Cichocki A. Convolutive blind source separation in the frequency domain based on sparse representation. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(5): 1551-1563
    [4] Abed-Meraim K, Belouchrani A. Algorithms for joint block diagonalization. In: Proceedings of the 12th European Signal Processing Conference. Vienna, Austria: IEEE, 2004. 209-212
    [5] Maehara T, Murota K. Algorithm for error-controlled simultaneous block-diagonalization of matrices. SIAM Journal on Matrix Analysis and Applications, 2011, 32(2): 605-620
    [6] Ghennioui H, Fadaili E M, Thirion-Moreau N, Adib A, Moreau E. A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources. IEEE Signal Processing Letters, 2007, 14(11): 860-863
    [7] Ghennioui H, Thirion-Moreau N, Moreau E, Aboutajdine D. Gradient-based joint block diagonalization algorithms: application to blind separation of fir convolutive mixtures. Signal Processing, 2010, 90(6): 1836-1849
    [8] Xu X F, Feng D Z, Zheng W X, Zhang H. Convolutive blind source separation based on joint block Toeplitzation and block-inner diagonalization. Signal Processing, 2010, 90(1): 119-133
    [9] Nion D. A tensor framework for nonunitary joint block diagonalization. IEEE Transactions on Signal Processing, 2011, 59(10): 4585-4594
    [10] Tichavský P, Yeredor A, Koldovský Z. On computation of approximate joint block-diagonalization using ordinary AJD. In: Proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation. Telaviv, Israel: Springer, 2012. 163-171
    [11] Lahat D, Cardoso J F, Messer H. Joint block diagonalization algorithms for optimal separation of multidimensional components. In: Proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation. Telaviv, Israel: Springer, 2012. 155-162
    [12] Ziehe A, Lascov P, Nolte G, Müller K R. A fast algorithm for joint diagonalization with nonorthogonal transformation and its application to blind source separation. Journal of Machine Learning Research, 2004, 5: 777-800
    [13] Zhang Xian-Da. Matrix Analysis and Applications. Beijing: Tsinghua University Press, 2004. 100-118(张贤达. 矩阵分析与应用. 北京: 清华大学出版社, 2004. 100-118)
    [14] Theis F J. Uniqueness of complex and multidimensional independent component analysis. Signal Processing, 2004, 84(5): 951-956
  • 加载中
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  28
  • PDF下载量:  1121
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-25
  • 修回日期:  2012-06-29
  • 刊出日期:  2013-09-20

目录

    /

    返回文章
    返回