2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弦高点和遗传算法的仿射配准

张桂梅 江少波 储珺

张桂梅, 江少波, 储珺. 基于弦高点和遗传算法的仿射配准. 自动化学报, 2013, 39(9): 1447-1457. doi: 10.3724/SP.J.1004.2013.01447
引用本文: 张桂梅, 江少波, 储珺. 基于弦高点和遗传算法的仿射配准. 自动化学报, 2013, 39(9): 1447-1457. doi: 10.3724/SP.J.1004.2013.01447
ZHANG Gui-Mei, JIANG Shao-Bo, CHU Jun. Affine Registration Based on Chord Height Point and Genetic Algorithm. ACTA AUTOMATICA SINICA, 2013, 39(9): 1447-1457. doi: 10.3724/SP.J.1004.2013.01447
Citation: ZHANG Gui-Mei, JIANG Shao-Bo, CHU Jun. Affine Registration Based on Chord Height Point and Genetic Algorithm. ACTA AUTOMATICA SINICA, 2013, 39(9): 1447-1457. doi: 10.3724/SP.J.1004.2013.01447

基于弦高点和遗传算法的仿射配准

doi: 10.3724/SP.J.1004.2013.01447
基金项目: 

国家重点基础研究发展计划 (973 计划) (2009CB320902); 国家自然科学基金(61063030); 江西省自然科学基金(2010GZS0168) 资助

详细信息
    作者简介:

    张桂梅 南昌航空大学航空制造工程学院教授.主要研究方向为图像处理, 计算机视觉与模式识别.E-mail: guimei.zh@163.com

Affine Registration Based on Chord Height Point and Genetic Algorithm

Funds: 

Supported by National Basic Research Program of China (973 Program) (2009CB320902), National Natural Science Foundation of China (61063030), and Natural Science Foundation of Jiangxi Province (2010GZS0168)

  • 摘要: 针对复杂场景中目标由于成像畸变、部分遮挡和局部缺失难于识别的难题, 提出了一种新的特征点——弦高点, 将其和遗传算法相结合用于图像的仿射配准. 算法首先给出了弦高点的定义, 并证明了其仿射不变性; 然后,应用遗传算法搜索模型和目标轮廓上两对对应点, 以弦高点作为第三对对应点, 求解最优的仿射变换矩阵; 最后,对遗传算法搜索的结果再进行线性搜索, 提高配准的精度. 本文利用 LTS Hausdorff距离(Least trimmed square Hausdorff distance, LTS-HD) 进行度量, 能有效克服部分遮挡或局部缺失的影响. 由于采用遗传算法, 并只需搜索两对对应点, 配准的速度得到提高. 理论分析和实验结果均表明, 该算法能有效地进行仿射配准, 并能处理部分遮挡或局部缺失.
  • [1] Brown L G. A survey of image registration techniques. ACM Computing Surveys, 1992, 24(4): 325-376
    [2] Zitová B, Flusser J. Image registration methods: a survey. Image and Vision Computing, 2003, 21(11): 977-1000
    [3] Lu X S, Zhang S, Su H, Chen Y Z. Mutual information-based multimodal image registration using a novel joint histogram estimation. Computerized Medical Imaging and Graphics, 2008, 32(3): 202-209
    [4] Lee J H, Kim Y S, Lee D, Kang D G, Ra J B. Robust CCD and IR image registration using gradient-based statistical information. IEEE Signal Processing Letters, 2010, 17(4): 347-350
    [5] Zhang X Q, Men T, Liu C, Yang J. Infrared and visible images registration using BEMD and MI. In: Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology. Chengdu, China: IEEE, 2010. 644-647
    [6] Besl P J, McKay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
    [7] Sharp G C, Lee S W, Wehe D K. ICP registration using invariant features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 90-102
    [8] Liu Y H. Improving ICP with easy implementation for free-form surface matching. Pattern Recognition, 2004, 37(2): 211-226
    [9] Hrkać T, Kalafatić Z, Krapac J. Infrared-visual image registration based on corners and Hausdorff distance. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2007. 383-392
    [10] Gao Feng, Wen Gong-Jian, Lv Jin-Jian. An optimal algorithm for IR/visual image registration based on main-line-pairs. Chinese Journal of Computers, 2007, 30(6): 1014-1021(高峰, 文贡坚, 吕金建. 基于干线对的红外与可见光最优图像配准算法. 计算机学报, 2007, 30(6): 1014-1021)
    [11] Su Juan, Lin Xing-Gang, Liu Dai-Zhi. A multi-sensor image registration algorithm based on structure feature edges. Acta Automatica Sinica, 2009, 35(3): 251-257(苏娟, 林行刚, 刘代志. 一种基于结构特征边缘的多传感器图像配准方法. 自动化学报, 2009, 35(3): 251-257)
    [12] Zhang Xiu-Wei, Zhang Yan-Ning, Yang Tao, Zhang Xin-Gong, Shao Da-Pei. Automatic visual-thermal image sequence registration based on co-motion. Acta Automatica Sinica, 2010, 36(9): 1220-1231(张秀伟, 张艳宁, 杨涛, 张新功, 邵大培. 基于Co-motion的可见光—热红外图像序列自动配准算法. 自动化学报, 2010, 36(9): 1220-1231)
    [13] Bilodeau G A, Torabi A, Morin F. Visible and infrared image registration using trajectories and composite foreground images. Image and Vision Computing, 2011, 29(1): 41-50
    [14] Lian Lin, Li Guo-Hui, Zhang Jun, Tu Dan. An automatic registration algorithm of infrared and visible images based on optimal mapping of edges. Acta Automatica Sinica, 2012, 38(4): 570-581(廉蔺, 李国辉, 张军, 涂丹. 基于边缘最优映射的红外和可见光图像自动配准算法. 自动化学报, 2012, 38(4): 570-581)
    [15] Tsang P W M. A genetic algorithm for aligning object shapes. Image and Vision Computing, 1997, 15(11): 819-831
    [16] Tsang P W M, Yuen T Y F. Affine invariant matching of broken boundaries based on an enhanced genetic algorithm and distance transform. IET Computer Vision, 2008, 2(3): 142-149
    [17] Tsang P W M, Situ W C. Affine invariant matching of broken boundaries based on simple genetic algorithm and contour reconstruction. Pattern Recognition Letters, 2010, 31(9): 771-780
    [18] Sim D G, Kwon O K, Park R H. Object matching algorithms using robust Hausdorff distance measures. IEEE Transactions on Image Processing, 1999, 8(3): 425-429
    [19] Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975
    [20] Mei Xiang-Ming, Liu Zeng-Xian, Wang Hui-Chun, Wang Zhi-Qiu. Higher Geometry (Third edition). Beijing: Higher Education Press, 2008. 13 (梅向明, 刘增贤, 王汇淳, 王智秋. 高等几何 (第3版). 北京: 高等教育出版社, 2008. 13)
  • 加载中
计量
  • 文章访问数:  1238
  • HTML全文浏览量:  65
  • PDF下载量:  1299
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-15
  • 修回日期:  2012-11-29
  • 刊出日期:  2013-09-20

目录

    /

    返回文章
    返回