2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输入饱和下的非线性积分系统的全局有限时间镇定

丁世宏 李世

丁世宏, 李世. 输入饱和下的非线性积分系统的全局有限时间镇定. 自动化学报, 2011, 37(10): 1222-1231. doi: 10.3724/SP.J.1004.2011.01222
引用本文: 丁世宏, 李世. 输入饱和下的非线性积分系统的全局有限时间镇定. 自动化学报, 2011, 37(10): 1222-1231. doi: 10.3724/SP.J.1004.2011.01222
DING Shi-Hong, LI Shi-Hua. Global Finite-time Stabilization of Nonlinear Integrator Systems Subject to Input Saturation. ACTA AUTOMATICA SINICA, 2011, 37(10): 1222-1231. doi: 10.3724/SP.J.1004.2011.01222
Citation: DING Shi-Hong, LI Shi-Hua. Global Finite-time Stabilization of Nonlinear Integrator Systems Subject to Input Saturation. ACTA AUTOMATICA SINICA, 2011, 37(10): 1222-1231. doi: 10.3724/SP.J.1004.2011.01222

输入饱和下的非线性积分系统的全局有限时间镇定

doi: 10.3724/SP.J.1004.2011.01222
详细信息
    通讯作者:

    丁世宏 江苏大学电气信息工程学院讲师. 主要研究方向为非线性系统控制和飞行器姿态控制. E-mail: dsh@ujs.edu.cn

Global Finite-time Stabilization of Nonlinear Integrator Systems Subject to Input Saturation

  • 摘要: 针对一类非线性积分系统, 利用有限时间控制技术, 提出了一种输入饱和情况下的全局有限时间控制方案. 首先, 基于有限时间 Lyapunov 稳定性理论, 设计镇定系统的全局有限时间递归控制器. 然后,将该递归控制器与饱和函数结合得到饱和控制器. 数学上严格证明了在该饱和控制器的作用下, 闭环系统满足全局有限时间稳定性. 仿真结果验证了该方法的有效性.
  • [1] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766[2] Ding S H, Li S H, Li Q. Stability analysis for a second-order continuous finite-time control system subject to a disturbance. Journal of Control Theory and Applications, 2009, 7(3): 271-176[3] Hong Y G. Finite-time stabilization and stabilizability of a class of controllable systems. Systems and Control Letters, 2002, 46(2): 231-236[4] Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability. Mathematics of Control, Signals and Systems, 2005, 17(2): 101-127[5] Bhat S P, Bernstein D S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Transactions on Automatic Control, 1998, 43(5): 678-682[6] Hong Y, Huang J, Xu Y. On an output feedback finite-time stabilization problem. IEEE Transactions on Automatic Control, 2001, 46(2): 305-309[7] Qian C, Lin W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1061-1079[8] Li J, Qian C, Ding S H. Global finite-time stabilisation by output feedback for a class of uncertain nonlinear systems. International Journal of Control, 2010, 83(11): 2241-2252[9] Shen Y J, Shen W M, Jiang M H, Huang Y H. Semi-global finite-time observers for multi-output nonlinear systems. International Journal of Robust and Nonlinear Control, 2010, 20(7): 789-801[10] Kosut R L. Design of linear systems with saturating linear control and bounded states. IEEE Transactions on Automatic Control, 1983, 28(1): 121-124[11] Lin Z, Saberi A. Semi-global exponential stabilization of linear systems subject to "input saturation" via linear feedbacks. Systems and Control Letters, 1993, 21(3): 225-239[12] Zhou B, Duan G R. A novel nested non-linear feedback law for global stabilization of linear systems with bounded controls. International Journal of Control, 2008, 81(9): 1352-1363[13] Ding S H, Qian C, Li S H. Global stabilization of a class of feedforward systems with lower-order nonlinearities. IEEE Transactions on Automatic Control, 2010, 55(3): 691-696[14] Hardy G H, Littlewood J E, Polya G. Inequalities. Cambridge: Cambridge University Press, 1952
  • 加载中
计量
  • 文章访问数:  2394
  • HTML全文浏览量:  79
  • PDF下载量:  1318
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-07
  • 修回日期:  2011-03-19
  • 刊出日期:  2011-10-20

目录

    /

    返回文章
    返回