2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变尺度变换减少Sigma点的粒子滤波算法研究

赵光琼 陈绍刚 付奎 唐忠樑 贺威

赵光琼, 陈绍刚, 付奎, 唐忠樑, 贺威. 基于变尺度变换减少Sigma点的粒子滤波算法研究. 自动化学报, 2015, 41(7): 1350-1355. doi: 10.16383/j.aas.2015.c140833
引用本文: 赵光琼, 陈绍刚, 付奎, 唐忠樑, 贺威. 基于变尺度变换减少Sigma点的粒子滤波算法研究. 自动化学报, 2015, 41(7): 1350-1355. doi: 10.16383/j.aas.2015.c140833
ZHAO Guang-Qiong, CHEN Shao-Gang, FU Kui, TANG Zhong-Liang, HE Wei. A Particle Filter Algorithm Based on Scaled UKF with Reduced Sigma Points. ACTA AUTOMATICA SINICA, 2015, 41(7): 1350-1355. doi: 10.16383/j.aas.2015.c140833
Citation: ZHAO Guang-Qiong, CHEN Shao-Gang, FU Kui, TANG Zhong-Liang, HE Wei. A Particle Filter Algorithm Based on Scaled UKF with Reduced Sigma Points. ACTA AUTOMATICA SINICA, 2015, 41(7): 1350-1355. doi: 10.16383/j.aas.2015.c140833

基于变尺度变换减少Sigma点的粒子滤波算法研究


DOI: 10.16383/j.aas.2015.c140833
详细信息
    作者简介:

    赵光琼电子科技大学数学科学学院硕士研究生. 主要研究方向为控制论. E-mail: zhaoguangqiong.math@gmail.com

  • 基金项目:

    国家重点基础研究发展计划(973计划) (2014CB744206)资助

A Particle Filter Algorithm Based on Scaled UKF with Reduced Sigma Points

More Information
  • Fund Project:

    Supported by National Basic Research Program of China (973 Program) (2014CB744206)

  • 摘要: 为了减少传统无味粒子滤波(Unscented particle filter, UPF) 算法的计算负担, 提出了最小斜度单形无味转换(Minimal skew simplex UT, MSSUT) 方法, 这种方法是用最小斜度无味卡尔曼滤波来产生粒子的重要性函数. 它不仅能够扩大重要性分布与系统状态的后验概率密度的重叠性, 而且能够通过减少Sigma 点来减少计算负担. 但是, 随着状态空间维数的增加, Sigma 点集的覆盖半径增大, 导致了Sigma 点集的聚集性变差. 辅助随机变量变尺度无味变换(Auxiliary random variable formulation of the scaled unscented transformation, ASUT) 能够克服Sigma 点集分布扩展的缺点. 所以, 提出了一种高维空间中改进的变尺度最小斜度无味粒子滤波(Scaled minimal skew simplex unscented particle filter, SMSSUPF) 算法. 仿真结果表明: 在高维状态空间中, 与传统的无味粒子滤波(UPF) 相比, 计算复杂度和计算负担显著减少. 与最小斜度无味粒子滤波(Minimal skew simplex unscented particle filter, MSSUPF) 相比, SMSSUPF 减少了系统噪声方差和测量噪声方差所带来的估计误差.
  • [1] Rigatos G G. A derivative-free Kalman filtering approach to state estimation-based control of nonlinear systems. IEEE Transactions on Industrial Electronics, 2012, 59(10): 3987-3997
    [2] Kong L, Kong L F, Wu P L. Adaptive Gaussian particle filter for nonlinear state estimation. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 2146-2150
    [3] Zhang X C. A novel cubature Kalman filter for nonlinear state estimation. In: Proceedings of the 52nd IEEE Conference on Decision and Control. Florence, Italy: IEEE, 2013. 7797-7802
    [4] Hu J P, Liu Z X, Wang J H, Wang L, Hu X M. Estimation, intervention and interaction of multi-agent systems. Acta Automatica Sinica, 2013, 39(11): 1796-1804
    [5] Wen Xin-Yu. Disturbance observer based control for a class of nonlinear systems with input time-delay. Acta Automatica Sinica, 2014, 40(9): 1882-1888) (文新宇. 一类含输入时滞非线性系统的干扰观测器控制. 自动化学报, 2014, 40(9): 1882-1888)
    [6] Novara C, Ruiz F, Milanes M. A new approach to optimal filter design for nonlinear systems. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 5484-5489
    [7] Zhang F R, Cao J S, Xu Z H. An improved particle swarm optimization particle filtering algorithm. In: Proceedings of the International Conference on 2013 Communications, Circuits and Systems. Chengdu, China: IEEE, 2013. 173-177
    [8] Zuo Jun-Yi, Zhang Yi-Zhe, Liang Yan. Particle filter based on adaptive part resampling. Acta Automatica Sinica, 2012, 38(4): 647-652(左军毅, 张怡哲, 梁彦. 自适应不完全重采样粒子滤波器. 自动化学报, 2012, 38(4): 647-652)
    [9] Zhu J, Wang X L, Fang Q S. The improved particle filter algorithm based on weight optimization. In: Proceedings of the 2013 International Conference on Information Science and Cloud Computing Companion. Guangzhou, China: IEEE, 2013. 351-356
    [10] Ouyang Cheng, Ji Hong-Bing, Guo Zhi-Qiang. Improved multiple model particle PHD and CPHD filtering algorithm. Acta Automatica Sinica, 2012, 38(3): 341-348(欧阳成, 姬红兵, 郭志强. 改进的多模型粒子PHD和CPHD滤波算法. 自动化学报, 2012, 38(3): 341-348)
    [11] Li L Q, Ji H B, Luo J H. The iterated extended Kalman particle filtering. Journal of Xidian University (Natural Science), 2007, 34(2): 233-238
    [12] Charalampidis A C, Papavassilopoulos G P. Improved auxiliary and unscented particle filter variants. In: Proceedings of the 52nd IEEE Annual Conference on Decision and Control. Florence, Italy: IEEE, 2013. 7040-7046
    [13] Julier S J. The scaled unscented transformation. In: Proceedings of the American Control Conference. Anchorage, AK: IEEE, 2002. 4555-4559
    [14] Julier S J. The spherical simplex unscented transformation. In: Proceedings of the American Control Conference. Denver, USA: IEEE, 2003. 2430-2434
    [15] Guo W Y, Han C Z, Lei M. Research on particle filter based on spherical unscented transformation. In: Proceedings of the 7th Word Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 8388-8392
    [16] Tian Jun, Qian Jian-Sheng, Li Shi-Yin. Unscented particle filter using iterative minimal skew simplex UKF. Control and Decision, 2011, 26(6): 888-892(田隽, 钱建生, 李世银. 迭代最小斜度单型Sigma采样UPF算法. 控制与决策, 2011, 26(6): 888-892)
    [17] Ning Xiao-Lin, Fang Jian-Cheng, Ma Xin. Impact of UPF filter parameters on spacecraft celestial navigation performance. Chinese Space Science and Technology, 2010, 30(3): 1-11(宁晓琳, 房建成, 马辛. UPF滤波参数对航天器天文导航性能的影响. 中国空间科学技术, 2010, 30(3): 1-11)
    [18] Guo Ying-Shi, Wang Chang, Zhang Ya-Qi. Analysis of noise variance's effect on Kalman filter result. Computer Engineering and Design, 2014, 35(2): 641-645(郭应时, 王畅, 张亚岐. 噪声方差对卡尔曼滤波结果影响分析. 计算机工程与设计, 2014, 35(2): 641-645)
    [19] Jiang Wei-Nan, Zhou Hai-Yin, Duan Xiao-Jun, Pan Xiao-Gang. Adaptive selecting method for scaling factor of scaled unscented transformation. Chinese Space Science and Technology, 2008, 28(3): 1-6(姜伟南, 周海银, 段晓君, 潘晓刚. 比例UT变换的一种比例因子自适应选取方法. 2008, 28(3): 1-6)
    [20] Cheng Shui-Ying. Unscented transformation and unscented Kalman filtering. Computer Engineering and Applications, 2008, 44(24): 25-35(程水英. 无味变换与无味卡尔曼滤波. 计算机工程与应用, 2008, 44(24): 25-35)
  • [1] 王呈, 陈晶, 荀径, 李开成. 基于混合滤波最大期望算法的高速列车建模[J]. 自动化学报, 2019, 45(12): 2260-2267. doi: 10.16383/j.aas.c190193
    [2] 张继文, 梁桐, 张淑平. 实验小鼠运动参数的模板匹配及粒子滤波提取方法[J]. 自动化学报, 2018, 44(1): 25-34. doi: 10.16383/j.aas.2018.c160573
    [3] 陆耿虹, 冯冬芹. 基于粒子滤波的工业控制网络态势感知建模[J]. 自动化学报, 2018, 44(8): 1405-1412. doi: 10.16383/j.aas.2017.c160830
    [4] 田梦楚, 薄煜明, 陈志敏, 吴盘龙, 赵高鹏. 萤火虫算法智能优化粒子滤波[J]. 自动化学报, 2016, 42(1): 89-97. doi: 10.16383/j.aas.2016.c150221
    [5] 李天成, 范红旗, 孙树栋. 粒子滤波理论、方法及其在多目标跟踪中的应用[J]. 自动化学报, 2015, 41(12): 1981-2002. doi: 10.16383/j.aas.2015.c150426
    [6] 宋宇, 李庆玲, 康轶非, 闫德立. 平方根容积Rao-Blackwillised粒子滤波SLAM算法[J]. 自动化学报, 2014, 40(2): 357-367. doi: 10.3724/SP.J.1004.2014.00357
    [7] 甘敏, 彭辉, 黄云志, 董学平. 自组织状态空间模型参数初始分布搜索算法[J]. 自动化学报, 2012, 38(9): 1538-1543. doi: 10.3724/SP.J.1004.2012.01538
    [8] 左军毅, 张怡哲, 梁彦. 自适应不完全重采样粒子滤波器[J]. 自动化学报, 2012, 38(4): 647-652. doi: 10.3724/SP.J.1004.2012.00647
    [9] 欧阳成, 姬红兵, 郭志强. 改进的多模型粒子PHD和CPHD滤波算法[J]. 自动化学报, 2012, 38(3): 341-348. doi: 10.3724/SP.J.1004.2012.00341
    [10] 顾鑫, 王海涛, 汪凌峰, 王颖, 陈如冰, 潘春洪. 基于不确定性度量的多特征融合跟踪[J]. 自动化学报, 2011, 37(5): 550-559. doi: 10.3724/SP.J.1004.2011.00550
    [11] 姚志均, 刘俊涛, 赖重远, 刘文予. 一种改进的JSD距离的空间直方图相似度度量及目标跟踪[J]. 自动化学报, 2011, 37(12): 1464-1473. doi: 10.3724/SP.J.1004.2011.01464
    [12] 张闯, 迟健男, 张朝晖, 王志良. 视线追踪系统中眼睛跟踪方法研究[J]. 自动化学报, 2010, 36(8): 1051-1061. doi: 10.3724/SP.J.1004.2010.01051
    [13] 宋宇, 孙富春, 李庆玲. 移动机器人的改进无迹粒子滤波蒙特卡罗定位算法[J]. 自动化学报, 2010, 36(6): 851-857. doi: 10.3724/SP.J.1004.2010.00851
    [14] 张共愿, 程咏梅, 杨峰, 潘泉, 梁彦. 基于方差缩减技术的一种自适应粒子滤波器设计[J]. 自动化学报, 2010, 36(7): 1020-1024. doi: 10.3724/SP.\,J.1004.2010.01020
    [15] 赵玲玲, 马培军, 苏小红. 一种快速准蒙特卡罗粒子滤波算法[J]. 自动化学报, 2010, 36(9): 1351-1356. doi: 10.3724/SP.J.1004.2010.01351
    [16] 侯代文, 殷福亮, 陈喆. 基于拟蒙特卡洛滤波的说话人跟踪方法[J]. 自动化学报, 2009, 35(7): 1016-1021. doi: 10.3724/SP.J.1004.2009.01016
    [17] 王文斐, 熊蓉, 褚健. 基于粒子滤波和点线相合的未知环境地图构建方法[J]. 自动化学报, 2009, 35(9): 1185-1192. doi: 10.3724/SP.J.1004.2009.01185
    [18] 武二永, 项志宇, 刘济林. 鲁棒的机器人蒙特卡洛定位算法[J]. 自动化学报, 2008, 34(8): 907-911. doi: 10.3724/SP.J.1004.2008.00907
    [19] 胡昌华, 张琪, 乔玉坤. 强跟踪粒子滤波算法及其在故障预报中的应用[J]. 自动化学报, 2008, 34(12): 1522-1528. doi: 10.3724/SP.J.1004.2008.01522
    [20] 段琢华, 蔡自兴, 于金霞. 不完备多模型混合系统故障诊断的粒子滤波算法[J]. 自动化学报, 2008, 34(5): 581-587. doi: 10.3724/SP.J.1004.2008.00581
  • 加载中
计量
  • 文章访问数:  870
  • HTML全文浏览量:  45
  • PDF下载量:  1342
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-07-20

基于变尺度变换减少Sigma点的粒子滤波算法研究

doi: 10.16383/j.aas.2015.c140833
    作者简介:

    赵光琼电子科技大学数学科学学院硕士研究生. 主要研究方向为控制论. E-mail: zhaoguangqiong.math@gmail.com

基金项目:

国家重点基础研究发展计划(973计划) (2014CB744206)资助

摘要: 为了减少传统无味粒子滤波(Unscented particle filter, UPF) 算法的计算负担, 提出了最小斜度单形无味转换(Minimal skew simplex UT, MSSUT) 方法, 这种方法是用最小斜度无味卡尔曼滤波来产生粒子的重要性函数. 它不仅能够扩大重要性分布与系统状态的后验概率密度的重叠性, 而且能够通过减少Sigma 点来减少计算负担. 但是, 随着状态空间维数的增加, Sigma 点集的覆盖半径增大, 导致了Sigma 点集的聚集性变差. 辅助随机变量变尺度无味变换(Auxiliary random variable formulation of the scaled unscented transformation, ASUT) 能够克服Sigma 点集分布扩展的缺点. 所以, 提出了一种高维空间中改进的变尺度最小斜度无味粒子滤波(Scaled minimal skew simplex unscented particle filter, SMSSUPF) 算法. 仿真结果表明: 在高维状态空间中, 与传统的无味粒子滤波(UPF) 相比, 计算复杂度和计算负担显著减少. 与最小斜度无味粒子滤波(Minimal skew simplex unscented particle filter, MSSUPF) 相比, SMSSUPF 减少了系统噪声方差和测量噪声方差所带来的估计误差.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回