2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于马尔科夫链的冲突证据组合方法

李新德 董清泉 王丰羽 雒超民

李新德, 董清泉, 王丰羽, 雒超民. 一种基于马尔科夫链的冲突证据组合方法. 自动化学报, 2015, 41(5): 914-927. doi: 10.16383/j.aas.2015.c140681
引用本文: 李新德, 董清泉, 王丰羽, 雒超民. 一种基于马尔科夫链的冲突证据组合方法. 自动化学报, 2015, 41(5): 914-927. doi: 10.16383/j.aas.2015.c140681
LI Xin-De, DONG Qing-Quan, WANG Feng-Yu, LUO Chao-Min. A Method of Conflictive Evidence Combination Based on the Markov Chain. ACTA AUTOMATICA SINICA, 2015, 41(5): 914-927. doi: 10.16383/j.aas.2015.c140681
Citation: LI Xin-De, DONG Qing-Quan, WANG Feng-Yu, LUO Chao-Min. A Method of Conflictive Evidence Combination Based on the Markov Chain. ACTA AUTOMATICA SINICA, 2015, 41(5): 914-927. doi: 10.16383/j.aas.2015.c140681

一种基于马尔科夫链的冲突证据组合方法


DOI: 10.16383/j.aas.2015.c140681
详细信息
    作者简介:

    董清泉 东南大学自动化学院硕士研究生. 主要研究方向为信息融合和不确定推理. E-mail: 374561475@qq.com

    通讯作者: 李新德 东南大学自动化学院副教授.主要研究方向为智能机器人, 人机交互,机器感知, 信息融合, 不确定推理和机器视觉. E-mail: xindeli@seu.edu.cn
  • 基金项目:

    国家自然科学基金(60804063, 61175091), 航空基金 (20140169002), 江苏省 "青蓝工程" 资助 计划, 江苏省 "六大高峰人才" 资助计划资助

A Method of Conflictive Evidence Combination Based on the Markov Chain

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (60804063, 61175091), Aeronautical Science Foundation of China (20140169002), Qing Lan Project of Jiangsu Province, and Six Major Top-talent Plan of Jiangsu Province

  • 摘要: 针对智能信息处理中Dempster组合规则不能处理高度冲突的问题,考虑到序贯证据的序列性具有高效的抗干扰性能,因此本文提出了一种基于马尔科夫链的冲突证据组合方法. 首先,从经典马尔科夫链中的确定性状态描述扩展到不确定性状态描述;然后,以滑动窗口宽度l对序贯历史证据进行采样, 并利用相似性测度计算的权重来修正它们,从而对修正后的历史证据进行马尔科夫建模,并根据转移概率矩阵,计算证据代表;最后,利用Murphy组合规则对该证据代表组合l-1次. 当然,本文方法也比较适合批量同步融合. 大量的仿真实验对比分析表明,该方法优势比较明显, 有效地解决了冲突证据合成出现的问题,并能有效兼顾合成结果的鲁棒性和灵敏性.
  • [1] Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976.
    [2] [2] Smarandache F, Dezert J. Advances and Applications of DSmT for Information Fusion, Collected Works. USA: American Research Press, 2004/2006/2009, Vol.1-3
    [3] Li Xin-De, Dezert J, Huang Xin-Han, Meng Zheng-Da, Wu Xue-Jian. A fast approximate reasoning method in hierarchical DSmT (A). Acta Electronica Sinica, 2010, 38(11): 2566-2572(李新德, Dezert J, 黄心汉, 孟正大, 吴雪建. 一种快速分层递阶DSmT近似推理融合方法(A). 电子学报, 2010, 38(11): 2566-2572)
    [4] Li Xin-De, Yang Wei-Dong, Wu Xue-Jian, Dezert J. A fast approximate reasoning method in hierarchical DSmT (B). Acta Electronica Sinica, 2011, 39(3A): 31-36(李新德, 杨伟东, 吴雪建, Dezert J. 一种快速分层递阶DSmT近似推理融合方法(B). 电子学报, 2011, 39(3A): 31-36)
    [5] Li Xin-De, Yang Wei-Dong, Dezert J. An airplane image target's multi-feature fusion recognition method. Acta Automatica Sinica, 2012, 38(8): 1298-1307(李新德, 杨伟东, Dezert J. 一种飞机图像目标多特征信息融合识别方法. 自动化学报, 2012, 38(8): 1298-1307)
    [6] Li Xin-De, Pan Jin-Dong, Dezert J. A target recognition algorithm for sequential aircraft based on DSmT and HMM. Acta Automatica Sinica, 2014, 40(12): 2862-2876(李新德, 潘锦东, Dezert J. 一种基于DSmT和HMM的序列飞机目标识别算法. 自动化学报, 2014, 40(12): 2862-2876)
    [7] [7] Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflict management. Information Fusion, 2002, 3(2): 149-162
    [8] [8] Yager R R. On the dempster-shafer framework and new combination rules. Information Sciences, 1987, 41(2): 93-137
    [9] [9] Liu W R. Analyzing the degree of conflict among belief functions. Artificial Intelligence, 2006, 170(11): 909-924
    [10] Wang Dong, Li Qi, Jiang Wen, Xu Xiao-Bin, Deng Yong. New method to combine conflict evidence based on pignistic probability distance. Infrared and Laser Engineering, 2009, 38(1): 149-154(王栋, 李齐, 蒋雯, 徐晓滨, 邓勇. 基于Pignistic概率距离的冲突证据合成方法. 红外与激光工程, 2009, 38(1): 149-154)
    [11] Deng Yong, Wang Dong, Li Qi, Zhang Ya-Juan. A new method to analyze evidence conflict. Control Theory Applications, 2011, 28(6): 839-844(邓勇, 王栋, 李齐, 章雅娟. 一种新的证据冲突分析方法. 控制理论与应用, 2011, 28(6): 839-844)
    [12] Quan Wen, Wang Xiao-Dan, Wang Jian, Zhang Yu-Xi. New combination rule of DST based on local conflict distribution strategy. Acta Electronica Sinica, 2012, 40(9): 1880-1884(权文, 王晓丹, 王坚, 张玉玺. 一种基于局部冲突分配的DST组合规则. 电子学报, 2012, 40(9): 1880-1884)
    [13] Yang J B, Xu D L. Evidential reasoning rule for evidence combination. Artificial Intelligence, 2013, 205: 1-29
    [14] Hu Li-Fang, Guan Xin, Deng Yong, He You. Cause-analysis for conflicting evidences in the generalized power space. Control Theory Applications, 2011, 28(12): 1717-1722(胡丽芳, 关欣, 邓勇, 何友. 广义幂集空间中证据冲突的原因分析. 控制理论与应用, 2011, 28(12): 1717-1722)
    [15] Xiong Yan-Ming, Yang Zhan-Ping, Qu Xin-Fen. Novel combination method of conflict evidence based on evidential model modification. Control and Decision, 2011, 26(6): 883-887(熊彦铭, 杨战平, 屈新芬. 基于模型修正的冲突证据组合新方法. 控制与决策, 2011, 26(6): 883-887)
    [16] Lu Zheng-Cai, Qin Zheng. General framework for evidence combination and its approach to highly conflicting evidence fusion. Journal of Tsinghua University (Science and Technology), 2011, 51(11): 1161-1615, 1626(卢正才, 覃征. 证据合成的一般框架及高度冲突证据合成方法. 清华大学学报(自然科学版), 2011, 51(11): 1161-1165, 1626)
    [17] Han De-Qiang, Han Chong-Zhao, Deng Yong, Yang Yi. Weighted combination of conflicting evidence based on evidence variance. Acta Electronica Sinica, 2011, 39(3A): 153-157(韩德强, 韩崇昭, 邓勇, 杨艺. 基于证据方差的加权证据组合. 电子学报, 2011, 39(3A): 153-157)
    [18] Jiang Wen, Zhang An, Deng Yong. A novel information fusion method based on our evidence conflict representation. Journal of Northwestern Polytechnical University, 2010, 28(1): 27-32(蒋雯, 张安, 邓勇. 基于新的证据冲突表示的信息融合方法研究. 西北工业大学学报, 2010, 28(1): 27-32)
    [19] Markov A A. Extension of the limit theorems of probability theory to a sum of variables connected in a chain. Dynamic Probabilistic Systems, Volume 1: Markov Models. New York: John Wiley and Sons, 1971.
    [20] Norris J R. Markov Chains. Cambridge: Cambridge University Press, 1999.
    [21] Zadeh L A. Review of books: a mathematical theory of evidence. The AI Magazine, 1984, 5(3): 81-83
    [22] Papoulis A, Pillai S U. Probability, Random Variables and Stochastic Processes (4th Edition). Xi'an: Xi'an Jiaotong University Press, 2012.(帕普里斯 A,佩莱 S U. 概率、随机变量与随机过程(第4版). 西安: 西安交通大学出版社. 2012.)
    [23] Deng Xin-Yang, Deng Yong, Zhang Ya-Juan, Liu Qi. A belief Markov model and its application. Acta Automatica Sinica, 2012, 38(4): 666-672(邓鑫洋, 邓勇, 章雅娟, 刘琪. 一种信度马尔科夫模型及应用. 自动化学报, 2012, 38(4): 666-672)
    [24] Jousselme A L, Maupin P. Distances in evidence theory: comprehensive survey and generalizations. International Journal of Approximate Reasoning, 2012, 53(2): 118-145
    [25] Jousselme A L, Grenier D, Boss E. A new distance between two bodies of evidence. Information Fusion, 2001, 2(2): 91-101
    [26] Li X D, Dezert J, Smarandache F, Huang X H. Evidence supporting measure of similarity for reducing the complexity in information fusion. Information Sciences, 2011, 181(10): 1818-1835
    [27] Smets P. Data Fusion in the transferable belief model. In: Proceedings of the 3rd International Conference on Information Fusion. Paris, France: IEEE, 2000. 21-33
    [28] Wen C L, Wang Y C, Xu X B. Fuzzy information fusion algorithm of fault diagnosis based on similarity measure of evidence. Advances in Neural Networks, Lecture Notes in Computer Science vol. 5264, Berlin: Springer Berlin Heidelberg, 2008. 506-515
    [29] Liu Z G, Dezert J, Pan Q, Mercier G. Combination of sources of evidence with different discounting factors based on a new dissimilarity measure. Decision Support Systems, 2011, 52(1): 133-141
    [30] Smets P, Kennes R. The transferable belief model. Artificial Intelligence, 1994, 66(2): 191-243
    [31] Smets P. Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning, 2005, 38(2): 133-147
    [32] Murphy C K. Combining belief functions when evidence conflicts. Decision Support Systems, 2000, 29(1): 1-9
    [33] Li Wen-Li, Guo Kai-Hong. Combination rules of D-S evidence theory and conflict problem. Systems Engineering-Theory Practice, 2010, 30(8): 1422-1432(李文立, 郭凯红. D-S证据理论合成规则及冲突问题. 系统工程理论与实践, 2010, 30(8): 1422-1432)
    [34] Li Xin-De, Wang Feng-Yu. A method of evidence reasoning based on ISODATA clustering and improved similarity measure. Acta Automatica Sinica, 2015, 41(3): 575-590(李新德, 王丰羽. 一种基于ISODATA聚类和改进相似度的证据推理方法. 自动化学报, 2015, 41(3): 575-590)
  • [1] 周炳海, 刘子龙. 带失效的拉式生产系统预防性维护建模[J]. 自动化学报, 2018, 44(6): 1045-1052. doi: 10.16383/j.aas.2017.c160767
    [2] 李晓航, 朱芳来. 延迟不确定马尔科夫跳变系统的执行器和传感器故障同时估计方法[J]. 自动化学报, 2017, 43(1): 72-82. doi: 10.16383/j.aas.2017.c150389
    [3] 赵福均, 周志杰, 胡昌华, 常雷雷, 王力. 基于证据推理的动态系统安全性在线评估方法[J]. 自动化学报, 2017, 43(11): 1950-1961. doi: 10.16383/j.aas.2017.c160384
    [4] 沈江, 余海燕, 徐曼. 实体异构性下证据链融合推理的多属性群决策[J]. 自动化学报, 2015, 41(4): 832-842. doi: 10.16383/j.aas.2015.c140650
    [5] 李新德, 王丰羽. 一种基于ISODATA聚类和改进相似度的证据推理方法[J]. 自动化学报, 2015, 41(3): 575-590. doi: 10.16383/j.aas.2015.c140543
    [6] 董春玲, 张勤. 用于不确定性故障诊断的权重逻辑推理算法研究[J]. 自动化学报, 2014, 40(12): 2766-2781. doi: 10.3724/SP.J.1004.2014.02766
    [7] 杜大军, 宋志华, 费敏锐, 王海宽. 受一类多通道异构网络通信约束的网络系统H2/H滤波研究[J]. 自动化学报, 2014, 40(11): 2664-2672. doi: 10.3724/SP.J.1004.2014.02664
    [8] 李岳场, 钟麦英. 线性离散马尔科夫跳跃系统最优故障检测[J]. 自动化学报, 2013, 39(6): 926-932. doi: 10.3724/SP.J.1004.2013.00926
    [9] 潘峰, 周倩, 李位星, 高琪. 标准粒子群优化算法的马尔科夫链分析[J]. 自动化学报, 2013, 39(4): 381-389. doi: 10.3724/SP.J.1004.2013.00381
    [10] 孔淑兰, 张召生. 带马尔科夫跳和乘积噪声的随机系统的最优控制[J]. 自动化学报, 2012, 38(7): 1113-1118. doi: 10.3724/SP.J.1004.2012.01113
    [11] 宋杨, 董豪, 费敏锐. 基于切换频度的马尔科夫网络控制系统均方指数镇定[J]. 自动化学报, 2012, 38(5): 876-881. doi: 10.3724/SP.J.1004.2012.00876
    [12] 邓鑫洋, 邓勇, 章雅娟, 刘琪. 一种信度马尔科夫模型及应用[J]. 自动化学报, 2012, 38(4): 666-672. doi: 10.3724/SP.J.1004.2012.00666
    [13] 周哲, 徐晓滨, 文成林, 吕锋. 冲突证据融合的优化方法[J]. 自动化学报, 2012, 38(6): 976-985. doi: 10.3724/SP.J.1004.2012.00976
    [14] 马莉, 达飞鹏, 吴凌尧. 带马尔科夫跳的模态相关时变时滞随机系统的状态反馈控制器设计[J]. 自动化学报, 2010, 36(11): 1601-1610. doi: 10.3724/SP.J.1004.2010.01601
    [15] 刘飞, 苏宏业, 褚健. 含参数不确定性的马尔可夫跳变过程鲁棒正实控制[J]. 自动化学报, 2003, 29(5): 761-766.
    [16] 潘泉, 张山鹰, 程咏梅, 张洪才. 证据推理的鲁棒性研究[J]. 自动化学报, 2001, 27(6): 798-805.
    [17] 王银河, 刘粉林, 黎阳生, 张嗣瀛. 一类具有不确定性的非线性相似组合系统的鲁棒镇定[J]. 自动化学报, 2000, 26(5): 602-608.
    [18] 王希若, 荣冈. 基于证据推理的显著误差检测方法[J]. 自动化学报, 2000, 26(增刊B): 86-90.
    [19] 徐光祐, 郭进. 视觉导引可移动机器人中的空间不确定性的表示和推理[J]. 自动化学报, 1992, 18(1): 39-46.
    [20] 宋逢明. 一个基于专家知识的不确定性分析推理系统[J]. 自动化学报, 1992, 18(4): 400-407.
  • 加载中
计量
  • 文章访问数:  841
  • HTML全文浏览量:  23
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2015-01-19
  • 刊出日期:  2015-05-20

一种基于马尔科夫链的冲突证据组合方法

doi: 10.16383/j.aas.2015.c140681
    作者简介:

    董清泉 东南大学自动化学院硕士研究生. 主要研究方向为信息融合和不确定推理. E-mail: 374561475@qq.com

    通讯作者: 李新德 东南大学自动化学院副教授.主要研究方向为智能机器人, 人机交互,机器感知, 信息融合, 不确定推理和机器视觉. E-mail: xindeli@seu.edu.cn
基金项目:

国家自然科学基金(60804063, 61175091), 航空基金 (20140169002), 江苏省 "青蓝工程" 资助 计划, 江苏省 "六大高峰人才" 资助计划资助

摘要: 针对智能信息处理中Dempster组合规则不能处理高度冲突的问题,考虑到序贯证据的序列性具有高效的抗干扰性能,因此本文提出了一种基于马尔科夫链的冲突证据组合方法. 首先,从经典马尔科夫链中的确定性状态描述扩展到不确定性状态描述;然后,以滑动窗口宽度l对序贯历史证据进行采样, 并利用相似性测度计算的权重来修正它们,从而对修正后的历史证据进行马尔科夫建模,并根据转移概率矩阵,计算证据代表;最后,利用Murphy组合规则对该证据代表组合l-1次. 当然,本文方法也比较适合批量同步融合. 大量的仿真实验对比分析表明,该方法优势比较明显, 有效地解决了冲突证据合成出现的问题,并能有效兼顾合成结果的鲁棒性和灵敏性.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回