2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿人足底肌电特征的机器人行走规划

孙广彬 王宏 陆志国 王福旺 史添玮 王琳

孙广彬, 王宏, 陆志国, 王福旺, 史添玮, 王琳. 仿人足底肌电特征的机器人行走规划. 自动化学报, 2015, 41(5): 874-884. doi: 10.16383/j.aas.2015.c140632
引用本文: 孙广彬, 王宏, 陆志国, 王福旺, 史添玮, 王琳. 仿人足底肌电特征的机器人行走规划. 自动化学报, 2015, 41(5): 874-884. doi: 10.16383/j.aas.2015.c140632
SUN Guang-Bin, WANG Hong, LU Zhi-Guo, WANG Fu-Wang, SHI Tian-Wei, WANG Lin. Humanoid Walking Planning Based on EMG from Human Foot-bottom. ACTA AUTOMATICA SINICA, 2015, 41(5): 874-884. doi: 10.16383/j.aas.2015.c140632
Citation: SUN Guang-Bin, WANG Hong, LU Zhi-Guo, WANG Fu-Wang, SHI Tian-Wei, WANG Lin. Humanoid Walking Planning Based on EMG from Human Foot-bottom. ACTA AUTOMATICA SINICA, 2015, 41(5): 874-884. doi: 10.16383/j.aas.2015.c140632

仿人足底肌电特征的机器人行走规划


DOI: 10.16383/j.aas.2015.c140632
详细信息
    作者简介:

    孙广彬 东北大学机械工程与自动化学院博士研究生. 主要研究方向为仿人机器人智能控制.E-mail: sunguangbin2@163.com

    通讯作者: 王宏 东北大学机械工程与自动化学院教授. 主要研究方向为生物机械电子工程, 人机交互与融合, 生理电信号分析与利用, 机器学习. E-mail: hongwang@mail.neu.edu.cn
  • 基金项目:

    国家自然科学基金(61071057, 51405073),辽宁省高等学校创新团队项目(LT2014006)资助

Humanoid Walking Planning Based on EMG from Human Foot-bottom

More Information
  • Fund Project:

    Supported by National Natural Science Foundation of China (61071057, 51405073) and the University Innovation Team of Liaoning Province (LT2014006)

  • 摘要: 模仿人类行走规律是规划双足机器人运动的基础.以往模仿人类步态主要通过视觉方法或惯性模块测量(Inertia measurement unit, IMU)方法捕捉人体特征点轨迹.这些方法不考虑零力矩点(Zero moment point, ZMP)的相似性.为解决该问题,本文提出了一种基于足底肌电信号(Electromyography, EMG)和惯性模块测量信号的混合运动规划方法.该方法通过测量足底肌电信号计算出足底压力中心的位置以及踝关节扭矩,结合惯性模块所测量的人体躯干和双足轨迹,来规划双足机器人的步态.首先,用肌电仪测量足底肌电信号,用惯性测量模块测量人体各肢体部分的姿态轨迹,经数据标定后作为仿人机器人的运动参考; 然后,通过预观控制输出稳定的步态.为确保仿人行走的效果,基于人体相似性对运动数据进行了步态优化.实验验证和分析表明, EMG信号超前ZMP约160ms,利用这个特性实现了对压力点位置的有效预测,提高了机器人在线模仿人类行走的稳定性.
  • [1] Johansson G. Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 1973, 14(2): 201-211
    [2] [2] Troje NF. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of vision, 2002, 2(5): 2
    [3] [3] Yamane K, Nakamura Y. Natural motion animation through constraining and deconstraining at will. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(3): 352-360
    [4] [4] Dasgupta A, Nakamura Y. Making feasible walking motion of humanoid robots from human motion capture data. 1999 Proceedings 1999 IEEE International Conference on Robotics and Automation: IEEE 1999. 1044-1049
    [5] [5] Hofmann A, Popovic M, Herr H. Exploiting angular momentum to enhance bipedal center-of-mass control. IEEE International Conference on Robotics and Automation (ICRA): IEEE 2009. 4423-4429
    [6] [6] Harada K, Miura K, Morisawa M, Kaneko K, Nakaoka S, Kanehiro F, Tsuji T, et al. Toward human-like walking pattern generator. IEEE/RSJ International Conference on Intelligent Robots and Systems 2009. 1071-1077
    [7] [7] Kajita S, Miura K, Morisawa M, Kaneko K, Kanehiro F, Yokoi K. Evaluation of a stabilizer for biped walk with toe support phase. 12th IEEE-RAS International Conference on Humanoid Robots 2012. 586-592
    [8] [8] Galdeano D, Bonnet V, Bennehar M, Fraisse P, Chemori A. Partial human data in design of human-like walking control in humanoid robotics. SYROCO 2012. 10(1): 485-490
    [9] [9] Miura K, Morisawa M, Kanehiro F, Kajita S, Kaneko K, Yokoi K. Human-like walking with toe supporting for humanoids. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): IEEE 2011. 4428-4435
    [10] Ogura Y, Shimomura K, Kondo H, Morishima A, Okubo T, Momoki S, Hun-ok L, Takanishi A. Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems: IEEE 2006. 3976-3981
    [11] Collins SH, Ruina A. A bipedal walking robot with efficient and human-like gait. Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005): IEEE 2005. 1983-1988
    [12] Nakaoka S, Nakazawa A, Yokoi K, Hirukawa H, Ikeuchi K. Generating whole body motions for a biped humanoid robot from captured human dances. 2003 IEEE International Conference on Robotics and Automation (ICRA 2003): IEEE 2003. 3905-3910
    [13] Huang Q, Peng Z, Zhang W, Zhang L, Li K. Design of humanoid complicated dynamic motion based on human motion capture. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005): IEEE 2005. 3536-3541
    [14] Nakaoka S, Nakazawa A, Kanehiro F, Kaneko K, Morisawa M, Ikeuchi K. Task model of lower body motion for a biped humanoid robot to imitate human dances. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005): IEEE 2005. 3157-3162
    [15] Miura K, Morisawa M, Nakaoka S, Kanehiro F, Harada K, Kaneko K, Kajita S. Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots. 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009): IEEE 2009. 596-603
    [16] Ott C, Lee D, Nakamura Y. Motion capture based human motion recognition and imitation by direct marker control. 8th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2008): IEEE 2008. 399-405
    [17] Suleiman W, Yoshida E, Kanehiro F, Laumond J-P, Monin A. On human motion imitation by humanoid robot. IEEE International Conference on Robotics and Automation (ICRA 2008): IEEE 2008. 2697-2704
    [18] Kim S-K, Hong S, Kim D. A walking motion imitation framework of a humanoid robot by human walking recognition from IMU motion data. 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009): IEEE 2009. 343-348
    [19] Zhao X, Huang Q, Peng Z, Li K. Kinematics mapping and similarity evaluation of humanoid motion based on human motion capture. Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004): IEEE 2004. 840-845
    [20] Zhao X J, Huang Q, Peng Z Q, Zhang L G, Li K J. Kinematics mapping of humanoid motion based on human motion. Robotics, 2005, 27(4): 358-361
    [21] Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H. Biped walking pattern generation by using preview control of zero-moment point. Proceedings of IEEE International Conference on Robotics and Automation 2003. 2: 1620-1626
    [22] Park J, Youm Y. General ZMP preview control for bipedal walking. IEEE International Conference on Robotics and Automation 2007. 2682-2687
    [23] Katayama T, Ohki T, Inoue T, Kato T. Design of an optimal controller for a discrete-time system subject to previewable demand. International Journal of Control, 1985, 41(3): 677-699
    [24] Nishiwaki K, Satoshi K. Simultaneous planning of CoM and ZMP based on the preview control method for online walking control. 11th IEEE-RAS International Conference on Humanoid Robots: IEEE 2011. 745-751
    [25] Nishiwaki K, Kagami S. Strategies for adjusting the ZMP reference trajectory for maintaining balance in humanoid walking. IEEE International Conference on Robotics and Automation: IEEE 2010. 4230-4236
    [26] Kim C, Kim D, Oh Y. Adaptation of human motion capture data to humanoid robots for motion imitation using optimization. Integrated computer-aided engineering, 2006, 13(4): 377-389
    [27] Mombaur K, Truong A, Laumond J-P. From human to humanoid locomotion an inverse optimal control approach. Autonomous robots, 2010, 28(3): 369-383
    [28] Koenemann J, Burget F, Bennewitz M. Real-time Imitation of Human Whole-Body Motions by Humanoids. Autonomous Robots, 2013.
    [29] Do M, Azad P, Asfour T, Dillmann R. Imitation of human motion on a humanoid robot using non-linear optimization. 8th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2008): IEEE 2008. 545-552
    [30] Kanehiro F, Suleiman W, Miura K, Morisawa M, Yoshida E. Feasible pattern generation method for humanoid robots. 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009): IEEE 2009. 542-548
    [31] de Lasa M, Mordatch I, Hertzmann A. Feature-based locomotion controllers. ACM Transactions on Graphics (TOG), 2010, 29(4): 131
    [32] Mordatch I, De Lasa M, Hertzmann A. Robust physics-based locomotion using low-dimensional planning. ACM Transactions on Graphics (TOG), 2010, 29(4): 71
    [33] Yamane K, Hodgins J. Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009): IEEE 2009. 2510-2517
    [34] Ferreira JP, Crisstomo M, Coimbra AP. ZMP trajectory reference for the sagittal plane control of a biped robot based on a human CoP and gait. 2009 IROS 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems: IEEE 2009. 1588-1593
    [35] Vukobratovic M, Stepanenko J. On the stability of anthropomorphic systems. Mathematical Biosciences, 1972, 15(1): 1-$37
  • [1] 吴志勇, 丁香乾, 许晓伟, 鞠传香. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018, 44(10): 1913-1920. doi: 10.16383/j.aas.2018.c170417
    [2] 杜义浩, 邱石, 谢平, 郭子晖, 吴晓光, 李小俚. 下肢康复机器人的自适应人机交互控制策略[J]. 自动化学报, 2018, 44(4): 743-750. doi: 10.16383/j.aas.2017.c160128
    [3] 孙文涛, 佘浩田, 李鑫, 朱金营, 姜银来, 横井浩史, 黄强. 基于上臂关节角度和肌电信号的二自由度假肢控制方法[J]. 自动化学报, 2018, 44(4): 667-675. doi: 10.16383/j.aas.2017.c160181
    [4] 刘志勇, 孙金玮, 卜宪庚. 单通道脑电信号眼电伪迹去除算法研究[J]. 自动化学报, 2017, 43(10): 1726-1735. doi: 10.16383/j.aas.2017.c160191
    [5] 孟明, 朱俊青, 佘青山, 马玉良, 罗志增. 多类运动想象脑电信号的两级特征提取方法[J]. 自动化学报, 2016, 42(12): 1915-1922. doi: 10.16383/j.aas.2016.c160122
    [6] 王金甲, 陈春. 分层向量自回归的多通道脑电信号的特征提取研究[J]. 自动化学报, 2016, 42(8): 1215-1226. doi: 10.16383/j.aas.2016.c150461
    [7] 张继文, 刘莉, 陈恳. 面向全方位双足步行跟随的路径规划[J]. 自动化学报, 2016, 42(2): 189-201. doi: 10.16383/j.aas.2016.c150432
    [8] 吴俊君, 管贻生, 张宏, 周雪峰, 苏满佳. 仿人机器人视觉导航中的实时性运动模糊探测器设计[J]. 自动化学报, 2014, 40(2): 267-276. doi: 10.3724/SP.J.1004.2014.00267
    [9] 柯文德, 彭志平, 蔡则苏, 朴松昊, 陈珂. 仿人机器人相似性运动轨迹跟踪控制研究[J]. 自动化学报, 2014, 40(11): 2404-2413. doi: 10.3724/SP.J.1004.2014.02404
    [10] 李阳, 田彦涛, 陈万忠. 基于FFT盲辨识的肌电信号建模及模式识别[J]. 自动化学报, 2012, 38(1): 128-134. doi: 10.3724/SP.J.1004.2012.00128
    [11] 柯文德, 崔刚, 洪炳, 蔡则苏, 朴松昊, 钟秋波. 参数化优化的仿人机器人相似性前向倒地研究[J]. 自动化学报, 2011, 37(8): 1006-1013. doi: 10.3724/SP.J.1004.2011.01006
    [12] 邢登鹏, 刘旭. 仿人机器人站立多平衡策略控制[J]. 自动化学报, 2011, 37(2): 228-233. doi: 10.3724/SP.J.1004.2011.00228
    [13] 张利格, 毕树生, 高金磊. 仿人机器人复杂动作设计中人体运动数据提取及分析方法[J]. 自动化学报, 2010, 36(1): 107-112. doi: 10.3724/SP.J.1004.2010.00107
    [14] 徐文福, 李成, 梁斌, 刘宇, 强文义. 空间机器人捕获运动目标的协调规划与控制方法[J]. 自动化学报, 2009, 35(9): 1216-1225. doi: 10.3724/SP.J.1004.2009.01216
    [15] 张利格, 黄强, 杨洁, 时有, 王志杰, JAFRI Ali Raza. 仿人机器人复杂动态动作设计及相似性研究[J]. 自动化学报, 2007, 33(5): 522-528. doi: 10.1360/aas-007-0522
    [16] 李朝晖, 黄强, 李科杰. 仿人机器人跑步稳定性准则[J]. 自动化学报, 2005, 31(4): 606-611.
    [17] 冯培恩, 孙守迁, 杨毅, 齐中伟. 采掘机器人的规划级控制技术研究[J]. 自动化学报, 1995, 21(1): 33-39.
    [18] 高为炳. 机器人班组的自组织递阶控制[J]. 自动化学报, 1994, 20(3): 257-264.
    [19] 苏春翌, 梁天培, 周其节. 机器人自适应模型跟踪变结构控制[J]. 自动化学报, 1991, 17(4): 426-433.
    [20] 肖春林, 刘兴良. 机器人控制系统[J]. 自动化学报, 1986, 12(3): 323-332.
  • 加载中
计量
  • 文章访问数:  780
  • HTML全文浏览量:  10
  • PDF下载量:  1434
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-02
  • 修回日期:  2015-01-13
  • 刊出日期:  2015-05-20

仿人足底肌电特征的机器人行走规划

doi: 10.16383/j.aas.2015.c140632
    作者简介:

    孙广彬 东北大学机械工程与自动化学院博士研究生. 主要研究方向为仿人机器人智能控制.E-mail: sunguangbin2@163.com

    通讯作者: 王宏 东北大学机械工程与自动化学院教授. 主要研究方向为生物机械电子工程, 人机交互与融合, 生理电信号分析与利用, 机器学习. E-mail: hongwang@mail.neu.edu.cn
基金项目:

国家自然科学基金(61071057, 51405073),辽宁省高等学校创新团队项目(LT2014006)资助

摘要: 模仿人类行走规律是规划双足机器人运动的基础.以往模仿人类步态主要通过视觉方法或惯性模块测量(Inertia measurement unit, IMU)方法捕捉人体特征点轨迹.这些方法不考虑零力矩点(Zero moment point, ZMP)的相似性.为解决该问题,本文提出了一种基于足底肌电信号(Electromyography, EMG)和惯性模块测量信号的混合运动规划方法.该方法通过测量足底肌电信号计算出足底压力中心的位置以及踝关节扭矩,结合惯性模块所测量的人体躯干和双足轨迹,来规划双足机器人的步态.首先,用肌电仪测量足底肌电信号,用惯性测量模块测量人体各肢体部分的姿态轨迹,经数据标定后作为仿人机器人的运动参考; 然后,通过预观控制输出稳定的步态.为确保仿人行走的效果,基于人体相似性对运动数据进行了步态优化.实验验证和分析表明, EMG信号超前ZMP约160ms,利用这个特性实现了对压力点位置的有效预测,提高了机器人在线模仿人类行走的稳定性.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回