2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于泡沫尺寸随机分布的铜粗选药剂量控制

朱建勇 桂卫华 阳春华 吴佳 周文振

朱建勇, 桂卫华, 阳春华, 吴佳, 周文振. 基于泡沫尺寸随机分布的铜粗选药剂量控制. 自动化学报, 2014, 40(10): 2089-2097. doi: 10.3724/SP.J.1004.2014.02089
引用本文: 朱建勇, 桂卫华, 阳春华, 吴佳, 周文振. 基于泡沫尺寸随机分布的铜粗选药剂量控制. 自动化学报, 2014, 40(10): 2089-2097. doi: 10.3724/SP.J.1004.2014.02089
ZHU Jian-Yong, GUI Wei-Hua, YANG Chun-Hua, WU Jia, ZHOU Wen-Zhen. Reagent Dosage Control Based on Bubble Size Random Distribution for Copper Roughing. ACTA AUTOMATICA SINICA, 2014, 40(10): 2089-2097. doi: 10.3724/SP.J.1004.2014.02089
Citation: ZHU Jian-Yong, GUI Wei-Hua, YANG Chun-Hua, WU Jia, ZHOU Wen-Zhen. Reagent Dosage Control Based on Bubble Size Random Distribution for Copper Roughing. ACTA AUTOMATICA SINICA, 2014, 40(10): 2089-2097. doi: 10.3724/SP.J.1004.2014.02089

基于泡沫尺寸随机分布的铜粗选药剂量控制

doi: 10.3724/SP.J.1004.2014.02089
基金项目: 

国家自然科学基金重点项目 (61134006),国家杰出青年科学基金 (61025015), 国家创新研究群体科学基金(61321003),教育部人文社科青年基金项目(13YJCAH089) 资助

详细信息
    作者简介:

    朱建勇 中南大学信息科学与工程学院博士研究生, 主要研究方向为工业过程的随机分布和预测控制.E-mail: jianyong-zhu@csu.edu.cn

Reagent Dosage Control Based on Bubble Size Random Distribution for Copper Roughing

Funds: 

Supported by Key Program of National Natural Science Foundation of China (61134006), National Science Fund for Distinguished Young Scholars of China (61025015), Foundation for Innovative Research Groups of National Natural Science Foundation of China (61321003), and Young Foundation of Humanities and Social Sciences of Ministry of Education of China (13YJCZH089)

  • 摘要: 为了稳定铜粗选选矿指标,提高矿产资源的利用水平, 根据铜粗选过程中泡沫尺寸分布随药剂量改变而动态变化的特点, 提出一种基于泡沫尺寸随机分布的铜粗选过程药剂量控制方法.首先, 针对泡沫尺寸分布具有非高斯统计特性, 基于方差和均值的统计参量难以表征该分布形态变化的问题, 提出了B样条估计方法以描述泡沫尺寸的概率密度函数(Probability density function, PDF); 然后, 针对B 样条权值相互关联的特点, 建立多输出最小二乘支持向量机模型(Multi-output least square support vector machine, MLS-SVM)以表征权值和药剂量的动态关系; 最后, 为减少系统的随机性, 采用基于熵的优化算法以确定药剂量, 实现对给定泡沫尺寸分布的跟踪控制.工业数据仿真验证了所提方法的有效性, 能有效稳定铜粗浮选的生产指标.
  • [1] Hodouin D, Bazin C, Gagnon E, Flament F. Feedforward-feedback predictive control of a simulated flotation bank. Power Technology, 2000, 108(2): 173-179
    [2] [2] Naik P K, Reddy P, Misra V N. Interpretation of interaction effects and optimization of reagent dosages for fine coal flotation. International Journal of Mineral Processing}, 2005, 75(1): 83-90
    [3] [3] Suichies M, Leroux D, Dechert C, Trusiak A. An implementation of generalized predictive control in a flotation plant. Control Engineering Practice, 2000, 8(3): 319-325
    [4] [4] Bergh L G, Yianatos J B. The long way toward multivariate predictive control of flotation processes. Journal of Process Control, 2011, 21(2): 226-234
    [5] [5] Aldrich C, Feng D. The effect of mothers on bubble size distributions in flotation pulp phases and surface froths. Minerals Engineering, 2000, 13(10): 1049-1057
    [6] [6] Neethling S J, Lee H T, Cilliers J J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering, 2003, 16(11): 1123-1130
    [7] [7] Grau R A, Heiskanen K. Bubble size distribution in laboratory scale flotation cells. Minerals Engineering, 2005, 18(12): 1164-1172
    [8] [8] Cho Y S, Laskowski J S. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 2002, 64(2): 69-80
    [9] [9] Yang C H, Xu C H, Gui W H, Du J J. Nonparametric density estimation of bubble size distribution for monitoring mineral flotation process. In: Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 2941-2945
    [10] Wang H. Bounded Dynamic Stochastic Systems: Modelling and Control. London: Springer, 2000.
    [11] Guo L, Wang H. Stochastic Distribution Control System Design. London: Springer-Verlag, 2010.
    [12] Yi Y, Guo L, Wang H. Constrained PI tracking control for output probability distributions based on two-step neural networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(7): 1416-1426
    [13] Forbes M G, Guay M, Forbes J F. Control design for first-order processes: shaping the probability density of the process state. Journal of Process Control, 2004, 14(4): 399-410
    [14] Xu C H, Gui W H, Yang C H, Zhu H Q, Lin Y Q, Shi C. Flotation process fault detection using output PDF of bubble size distribution. Minerals Engineering, 2012, 26: 5-12
    [15] Liu J P, Gui W H, Tang Z H, Yang C H, Zhu J Y, Li J Q. Recognition of the operational statuses of reagent addition using dynamic bubble size distribution in copper flotation process. Minerals Engineering, 2013, 45: 128-141
    [16] Gui Wei-Hua, Yang Chun-Hua, Xu De-Gang, Lu Ming, Xie Yong-Fang. Machine-vision-based online measuring and controlling technologies for mineral flotation-a review. Acta Automatica Sinica, 2013, 39(11): 1879-1888 (桂卫华, 阳春华, 徐德刚, 卢明, 谢永芳. 基于机器视觉的矿物浮选过程监控技术研究进展. 自动化学报, 2013, 39(11): 1879-1888)
    [17] Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39(3): 222-236 (席裕庚, 李德伟, 林姝. 模型预测控制-现状与挑战. 自动化学报, 2013, 39(3): 222-236)
    [18] Wang W, Bergholm F, Yang B. Froth delineation based on image classification. Minerals Engineering, 2003, 16(11): 1183-1192
    [19] Wang W X, Li L. Image analysis and computer vision for mineral froth. IEEE International Conference Mechatronics and Automation, 2005, 4: 1790-1795
    [20] Bonifazi G, Serranti S, Volpe F, Zuco R. Characterisation of flotation froth colour and structure by machine vision. Computers Geosciences, 2001, 27(9): 1111-1117
    [21] Liu J J, MacGregor J F, Duchesne C, Bartolacci G. Flotation froth monitoring using multiresolutional multivariate image analysis. Minerals Engineering, 2005, 18(1): 65-76
    [22] Runge K, McMaster J, Wortley M, La Rosa D, Gu O. A correlation between visiofrothm TM measurements and the performance of a flotation cell. In: Proceedings of the Ninth Mill Operators' Conference. Fremantle, Western Austalia: 2007. 19-21
    [23] Forbes G. Texture and Bubble Size Measurements for Modelling Concentrate Grade in Flotation Froth Systems [Ph. D. dissertation], University of Cape Town, South Africa, 2007
    [24] Zong Z, Lam K Y. Estimation of complicated distributions using B-spline functions. Structural Safety, 1998, 20(4): 341-355
    [25] Xu S, An X, Qiao X D, Zhu L J, Li L. Multi-output least-squares support vector regression machines. Pattern Recognition Letters, 2013, 34(9): 1078-1084
    [26] Han Z Y, Liu Y, Zhao J, Wang W. Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Engineering Practice, 2012, 20(12): 1400-1409
    [27] Guo X C, Yang J H, Wu C G, Wang C Y, Liang Y C. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing, 2008, 71(16): 3211-3215
    [28] Wang H. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Transactions on Automatic Control, 2002, 47(2): 398-403
    [29] Guo L, Wang H. Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Transactions on Automatic Control, 2006, 51(4): 695-700
  • 加载中
计量
  • 文章访问数:  1469
  • HTML全文浏览量:  67
  • PDF下载量:  1467
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2013-11-21
  • 刊出日期:  2014-10-20

目录

    /

    返回文章
    返回