2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑通信状况的多机器人CSLAM问题综述

张国良 汤文俊 曾静 徐君 姚二亮

张国良, 汤文俊, 曾静, 徐君, 姚二亮. 考虑通信状况的多机器人CSLAM问题综述. 自动化学报, 2014, 40(10): 2073-2088. doi: 10.3724/SP.J.1004.2014.02073
引用本文: 张国良, 汤文俊, 曾静, 徐君, 姚二亮. 考虑通信状况的多机器人CSLAM问题综述. 自动化学报, 2014, 40(10): 2073-2088. doi: 10.3724/SP.J.1004.2014.02073
ZHANG Guo-Liang, TANG Wen-Jun, ZENG Jing, XU Jun, YAO Er-Liang. An Overview on the Cooperative SLAM Problem of Multi-robot Systems Considering Communication Conditions. ACTA AUTOMATICA SINICA, 2014, 40(10): 2073-2088. doi: 10.3724/SP.J.1004.2014.02073
Citation: ZHANG Guo-Liang, TANG Wen-Jun, ZENG Jing, XU Jun, YAO Er-Liang. An Overview on the Cooperative SLAM Problem of Multi-robot Systems Considering Communication Conditions. ACTA AUTOMATICA SINICA, 2014, 40(10): 2073-2088. doi: 10.3724/SP.J.1004.2014.02073

考虑通信状况的多机器人CSLAM问题综述

doi: 10.3724/SP.J.1004.2014.02073
基金项目: 

陕西省基金项目 (2012K06-45)资助

详细信息
    作者简介:

    张国良 第二炮兵工程大学教授. 主要研究方向为机器人技术, 先进控制理论与应用. E-mail: zhgl@sohu.com

An Overview on the Cooperative SLAM Problem of Multi-robot Systems Considering Communication Conditions

Funds: 

Supported by Fund Program of Shaanxi Province (2012K06-45)

  • 摘要: 多机器人系统的通信状况能够直接影响协作同时定位与地图创建(Cooperative simultaneous localization and mapping, CSLAM)算法的设计和实现.根据对多机器人通信状况所作出假设的侧重点不同, 对多机器人CSLAM算法研究现状和进展进行综述.首先,简要介绍了基于完全连通通信条件的集中式CSLAM算法的特点和缺陷; 其次,结合多机器人系统初始相对位姿关系未知的情况,从地图配准、数据关联和地图融合等三个方面, 对基于通信范围或者带宽受限条件的分布式CSLAM算法的地图合并问题进行了分析和阐述; 进而重点对考虑稀疏动态通信状况的分布式CSLAM算法的最新研究成果进行了归纳总结. 最后指出多机器人CSLAM研究领域今后的研究方向.
  • [1] Dudek G, Jenkin M R M, Milios E, Wilkes D. A taxonomy for multi-agent robotics. Autonomous Robots, 1996, 3(4): 375-397
    [2] [2] Cao Y U, Fukunaga A S, Kahng A. Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 2003, 4(1): 7-27
    [3] [3] Kremens R, Faulring J, Gallagher A, Seema A, Vodacek A. Autonomous field-deployable wildland fire sensors. International Journal of Wildland Fire, 2003, 12(2): 237-244
    [4] [4] Mathews G M, Durrant-Whyte H F. Decentralised optimal control for reconnaissance. In: Proceedings of Information, Decision and Control. Adelaide, Australia: IEEE, 2007. 314-319
    [5] [5] Simmons R, Smith T, Dias M B, Goldberg D, Hershberger D, Stentz A, Zlot R. Multi-robot systems: from swarms to intelligent automata. In: Proceedings of the 2002 NRL Workshop on Multi-Robot Systems. Netherlands: Springer, 2002. 103-112
    [6] [6] Carpin S, Birk A, Jucikas V. On map merging. IEEE Robotics and Autonomous Systems, 2005, 53(1): 1-14
    [7] Pan Wei. Research on Map Building of Multiple Mobile Robot [Ph.D. dissertation], Central South University, China, 2009(潘薇. 多移动机器人地图构建的方法研究 [Ph.D. dissertation], 中南大学, 中国, 2009)
    [8] Ren Xiao-Ping, Cai Zi-Xing, Chen Ai-Bin. Current research in multi-mobile robots communication system. Control and Decision, 2010, 25(3): 327-332(任孝平, 蔡自兴, 陈爱斌. 多移动机器人通信系统研究进展. 控制与决策, 2010, 25(3): 327-332)
    [9] Sun Liang, Zhang Yong-Qiang, Qiao Shi-Quan. Summary of multi-robot communication technology. China Science and Technology Information, 2008, (5): 112-114(孙亮, 张永强, 乔世权. 多移动机器人通信技术综述. 中国科技信息, 2008, (5): 112-114)
    [10] Meng Xian-Song, Liu Jian-Hua, Zhang Ming-Jun. Research on multiple autonomous underwater vehicles formation communication. Shipbuilding of China, 2008, 48(4): 77-84(孟宪松, 刘建华, 张铭钧. 多水下机器人编队通信研究. 中国造船, 2008, 48(4): 77-84)
    [11] Ballesta M, Reinoso O, Gil A, Julia M, Paya L. Analysis of map alignment techniques in visual slam systems. In: Proceedings of Emerging Technologies and Factory Automation. Hamburg, Germany: IEEE, 2008. 825-832
    [12] Romero V A, Costa O L V. Map merging strategies for multi-robot fastSLAM: a comparative survey. In: Proceedings of Robotics Symposium and Intelligent Robotic Meeting (LARS). Latin, USA: IEEE, 2010. 61-66
    [13] Lee H C, Lee S H, Lee T S, Kim D J, Lee B H. A survey of map merging techniques for cooperative-SLAM. In: Proceedings of 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Daejeon, South Korea: IEEE, 2012. 26-29
    [14] Zhou X S, Roumeliotis S I. Multi-robot SLAM with unknown initial correspondence: the robot rendezvous case. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2005. 1785-1792
    [15] Bar-Shalom Y. Tracking and Data Association. USA: San Diego: Academic Press, 1987
    [16] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110
    [17] Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117
    [18] Leung K Y K, Barfoot T D, Liu H H T. Decentralized cooperative SLAM for sparsely-communicating robot networks: a centralized-equivalent approach. Journal of Intelligent and Robotic Systems, 2012, 66(3): 321-342
    [19] Aragues R, Cortes J, Sagues C. Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Transactions on Robotics, 2012, 28(4): 840-854
    [20] Montijano E, Aragues R, Sagues C. Distributed data association in robotic networks with cameras and limited communications. IEEE Transactions on Robotics, 2013, 29(6): 1408-1423
    [21] Aragues R, Cortes J, Sagues C. Distributed map merging with consensus on common information. In: Proceedings of Control Conference (ECC), 2013 European. Zurich, Switzerland: IEEE, 2013. 736-741
    [22] Aragues R, Sagues C, Mezouar Y. Feature-based map merging with dynamic consensus on information increments. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany: IEEE, 2013. 2725-2730
    [23] Rone W, Ben-Tzvi P. Mapping, localization and motion planning in mobile multi-robotic systems. Robotica, 2013, 31(1): 1-23
    [24] Cunningham A, Indelman V, Dellaert F. DDF-SAM 2.0: Consistent distributed smoothing and mapping. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany: IEEE, 2013. 5220-5227
    [25] Cunningham A, Wurm K M, Burgard W, Dellaert F. Fully distributed scalable smoothing and mapping with robust multi-robot data association. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA). Saint Paul, USA: IEEE, 2012. 1093-1100
    [26] Leung K Y K. Cooperative Localization and Mapping in Sparsely-Communicating Robot Networks [Ph.D. dissertation], University of Toronto, Canada, 2012
    [27] Howard A, Kitchen L. Cooperative Localisation and Mapping: Preliminary Report, Technical Report tr1999/24, Department of Computer Science and Software Engineering, University of Melbourne, Australia, 1999
    [28] Burgard W, Moors M, Fox D, Simmons R, Thrun S. Collaborative multi-robot exploration. In: Proceedings of Robotics and Automation. Saint Paul, USA: IEEE, 2000. 476-481
    [29] Simmons R, Apfelbaum D, Burgard W, Fox D, Moors M, Thrun S, Younes H L S. Coordination for multi-robot exploration and mapping. In: Proceedings of the 17th National Conference on Artificial Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence. USA: AAAI Press, 2000. 852-858
    [30] Wang Z, Huang S D, Dissanayake G. Multi-robot simultaneous localization and mapping using d-slam framework. In: Proceedings of Intelligent Sensors, Sensor Networks and Information. Melbourne, Australia: IEEE, 2007. 317-322
    [31] Dellaert F, Alegre F, Martinson E B. Intrinsic localization and mapping with 2 applications: diffusion mapping and macro polo localization. In: Proceedings of Robotics and Automation. Taipei, China: IEEE, 2003. 2344-2349
    [32] Fenwick J W, Newman P M, Leonard J J. Cooperative concurrent mapping and localization. In: Proceedings of Robotics and Automation. Washington D.C., USA: IEEE, 2002. 1810-1817
    [33] Thrun S. An Online Mapping Algorithm for Teams of Mobile Robots, CMU-CS-00-167, Carnegie-Mellon University Pittsburgh Pa School of Computer Science, Carnegie-Mellon University, USA, 2000
    [34] Thrun S, Burgard W, Fox D. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000. 321-328
    [35] Thrun S. A probabilistic on-line mapping algorithm for teams of mobile robots. The International Journal of Robotics Research, 2001, 20(5): 335-363
    [36] Choi K S, Lee S G. An enhanced CSLAM for multi-robot based on unscented Kalman filter. International Journal of Control, Automation and Systems, 2012, 10(1): 102-108
    [37] Thrun S, Liu Y, Koller D, Ng A Y, Ghahramani Z B, Durrant-Whyte H. Simultaneous localization and mapping with sparse extended information filters. The International Journal of Robotics Research, 2004, 23(7-8): 693-716
    [38] Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots. Autonomous Robots, 1998, 5(3-4): 253-271
    [39] Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation. In: Proceedings of Adaptive Systems for Signal Processing, Communications, and Control Symposium. Lake Louise, Alberta, Canada: IEEE, 2000. 153-158
    [40] Bar-Shalom Y, Chen H, Mallick M. One-step solution for the multistep out-of-sequence-measurement problem in tracking. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 27-37
    [41] Bar-Shalom Y. Update with out-of-sequence measurements in tracking: exact solution. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 769-777
    [42] Wang Wei, Huang Xin-Han, Wang Min. Survey of sequence measurement filtering algorithm. Control and Decision, 2012, 27(1): 1-7, 14(王炜, 黄心汉, 王敏. 无序量测滤波更新算法综述. 控制与决策, 2012, 27(1): 1-7, 14)
    [43] Rodriguez-Losada D, Matia F, Jimenez A. Local maps fusion for real time multirobot indoor simultaneous localization and mapping. In: Proceedings of Robotics and Automation. Michigan, USA: IEEE, 1999. 1308-1313
    [44] Castellanos J A, Montiel J M M, Neira J, Tardos J D. The SPmap: a probabilistic framework for simultaneous localization and map building. Robotics and Automation, IEEE Transactions on, 1999, 15(5): 948-952
    [45] Williams S B. Efficient Solutions to Autonomous Mapping and Navigation Problems [Ph.D. dissertation], The University of Sydney, Australia, 2001
    [46] Williams S B, Dissanayake G, Durrant-Whyte H. Towards multi-vehicle simultaneous localisation and mapping. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Michigan, Washington D.C.: IEEE, 2002. 2743-2748
    [47] Yuan Jing, Huang Ya-Lou, Tao Tong, Xi Bai-Yu. Multi-robot active simultaneous localization and mapping based on local submap approach. Robot, 2009, 31(2): 97-103(苑晶, 黄亚楼, 陶通, 习白羽. 基于局部子地图方法的多机器人主动同时定位与地图创建. 机器人, 2009, 31(2): 97-103)
    [48] Jafri S R U N, Brayda L, Chellali R. Distributed feature based RBPF multi robot SLAM. In: Proceedings of Robotics and Biomimetics. Phuket, Thailand: IEEE, 2011. 1066-1071
    [49] Wu Xiao-Lin, Song Meng, Yuan Jing, Sun Feng-Chi, Tao Tong. Multi-robot active SLAM under limited communication range. Journal of Systems Engineering and Electronics, 2012, 34(10): 2011-2128(吴晓琳, 宋萌, 苑晶, 孙凤池, 陶通. 通讯范围受限条件下的多机器人主动SLAM. 系统工程与电子技术, 2012, 34(10): 2011-2128)
    [50] Pham V C, Juang J C. An improved active SLAM algorithm for multi-robot exploration. In: Proceedings of SICE Annual Conference. Tokyo, Japan: IEEE, 2011. 1660-1665
    [51] Chapman A, Sukkarieh S. A protocol for decentralized multi-vehicle mapping with limited communication connectivity. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 357-362
    [52] Pfingsthorn M, Birk A, Bulow H. An efficient strategy for data exchange in multi-robot mapping under underwater communication constraints. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 4886-4893
    [53] Nettleton E, Thrun S, Durrant-Whyte H, Sukkarieh S. Decentralised SLAM with low-bandwidth communication for teams of vehicles. Field and Service Robotics, 2006, 24: 179-188
    [54] Reece S, Roberts S. Robust, low-bandwidth, multi-vehicle mapping. In: Proceedings of Information Fusion. Philadelphia, USA: IEEE, 2005. 1319-1326
    [55] Yu H Y, Zhuang Y, Wang W. Distributed H filtering in sensor networks with randomly occurred missing measurements and communication link failures. Information Sciences, 2013, 222: 424-438
    [56] Tuna G, Gulez K, Gungor V C. Communication related design considerations of WSN-aided multi-Robot SLAM. In: Proceedings of Mechatronics. Istanbul, Turkey: IEEE, 2011. 493-498
    [57] Sayyaadi H, Doostmohammadian M R. Finite-time consensus in directed switching network topologies and time-delayed communications. Scientia Iranica, 2011, 18(1): 75-85
    [58] You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2): 101-118(游科友, 谢立华. 网络控制系统的最新研究综述. 自动化学报, 2013, 39(2): 101-118)
    [59] Wang Y, Li C, Liu X Y. Consensus-based filter designing for wireless sensor networks with packet loss. ISA Transactions, 2014, 53(2): 578-583
    [60] Konolige K, Fox D, Limketkai B, Ko J, Steward B. Map merging for distributed robot navigation. In: Proceedings of Intelligent Robots and Systems. Nevada, USA: IEEE, 2003. 212-217
    [61] Lee H C, Kwak N, Lee J H, Lee B H. Probabilistic feature matching for map merging in the multi-robot FastSLAM with unknown initial correspondence. In: Proceedings of Ubiquitous Robots and Ambient Intelligence. Seoul, South Korea: IEEE, 2008. 693-698
    [62] Zhou X S, Roumeliotis S I. Multi-robot SLAM with unknown initial correspondence: the robot rendezvous case. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006. 1785-1792
    [63] Benedettelli D, Garulli A, Giannitrapani A. Cooperative SLAM using M-Space representation of linear features. Robotics and Autonomous Systems, 2012, 60(10): 1267-1278
    [64] Andersson L A A, Nygards J. C-sam: multi-robot slam using square root information smoothing. In: Proceedings of Robotics and Automation. California, USA: IEEE, 2008. 2798-2805
    [65] Carlone L, Ng M K, Du JJ, Bona B, Indri M. Rao-Blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication. In: Proceedings of Robotics and Automation. Alaska, USA: IEEE, 2010. 243-249
    [66] Ozkucur N E, Akin H L. RoboCup 2009: Robot Soccer World Cup XIII. Berlin: Springer, 2010. 449-460
    [67] Wu M, Huang F F, Wang L, Sun J Y. Cooperative multi-robot monocular-SLAM using salient landmarks. In: Proceedings of Informatics in Control, Automation and Robotics. Bangkok, Thailand: IEEE, 2009. 151-155
    [68] Andersson L A A, Nygards J. On multi-robot map fusion by inter-robot observations. In: Proceedings of Information Fusion. Seattle, WA: IEEE, 2009. 1712-1721
    [69] Dinnissen P, Givigi S N, Schwartz H M. Map merging of multi-robot SLAM using reinforcement learning. In: Proceedings of Systems, Man, and Cybernetics. Seoul, South Korea: IEEE, 2012. 53-60
    [70] Lee H C, Cho Y J, Lee B H. Accurate map merging with virtual emphasis for multi-robot systems. Electronics Letters, 2013, 49(15): 932-934
    [71] Hajjdiab H, Laganiere R. Vision-based multi-robot simultaneous localization and mapping. In: Proceedings of Computer and Robot Vision. London, ON, Canada: IEEE, 2004. 155-162
    [72] Lee H C, Lee B H. Improved feature map merging using virtual supporting lines for multi-robot systems. Advanced Robotics, 2011, 25(13-14): 1675-1696
    [73] Lee H S, Lee K M. Multi-robot SLAM using ceiling vision. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA: IEEE, 2009. 912-917
    [74] Jeong W Y, Lee K M. CV-SLAM: a new ceiling vision-based SLAM technique. In: Proceedings of Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005. 3195-3200
    [75] Li Z, un Nabi Jafri S R, Chellali R. Visual place recognition for multi-robots maps merging. In: Proceedings of the 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics. College Station, TX: IEEE, 2012. 1-6
    [76] Len A, Barea R, Bergasa L M, Lopez E, Ocana M, Schleicher D. SLAM and map merging. Journal of Physical Agents, 2009, 3(1): 13-23
    [77] Birk A, Carpin S. Merging occupancy grid maps from multiple robots. Proceedings of the IEEE, 2006, 94(7): 1384-1397
    [78] Saeedi S, Paull L, Trentini M, Li H. Multiple robot simultaneous localization and mapping. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA: IEEE, 2011. 853-858
    [79] Saeedi S, Paull L, Trentini M, Li H. Neural network-based multiple robot simultaneous localization and mapping. Neural Networks, 2011, 22(12): 2376-2387
    [80] Carpin S, Pillonetto G. Motion planning using adaptive random walks. IEEE Transactions on Robotics, 2005, 21(1): 129-136
    [81] Wang K, Jia S M, Li Y C, Li X Z, Guo B. Research on map merging for multi-robotic system based on RTM. In: Proceedings of Information and Automation. Shenyang, China: IEEE, 2012. 156-161
    [82] Huang W H, Beevers K R. Topological map merging. The International Journal of Robotics Research, 2005, 24(8): 601-613
    [83] Lee H C, Lee S H, Choi M H, Lee B H. Probabilistic map merging for multi-robot RBPF-SLAM with unknown initial poses. Robotica, 2012, 30(2): 205-220
    [84] Lakaemper R, Latecki L J, Wolter D. Incremental multi-robot mapping. In: Proceedings of Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005. 3846-3851
    [85] Tungadi F, Lui W L D, Kleeman L, Jarvis R. Robust online map merging system using laser scan matching and omnidirectional vision. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 7-14
    [86] Lee H C. Implementation of a network-based robot system for cooperative recognition and localization of multiple objects. In: Proceedings of IEEK Summer Conference. Jeju Island, South Korea: IEEK, 2012. 28-36
    [87] Swinnerton J, Brimble R. Autonomous self-localization and mapping agents. In: Proceedings of the 8th Information Fusion. Philadelphia, USA: IEEE, 2005. 1178-1184
    [88] Ji Xiu-Cai. Data Association Problem for Simultaneous Localization and Mapping of Mobile Robots [Ph.D. dissertation], National University of Defense Technology, China, 2008(季秀才. 机器人同步定位与建图中数据关联问题研究 [博士学位论文], 国防科学技术大学, 中国, 2008)
    [89] Shao Yan. Research of Multi-Robot Simultaneous Localization and Mapping Based on Particle Filter [Master dissertation], South China University of Technology, China, 2011(邵妍. 基于粒子滤波器的多机器人同时定位与地图创建问题研究 [硕士学位论文], 华南理工大学, 中国, 2011)
    [90] Wang Yao-Qiang. Data Association in Simultaneous Localization and Map Building [Master dissertation], Harbin Institute of Technology, China, 2008(王要强. 同步定位与地图构建技术中的数据关联问题 [硕士学位论文], 哈尔滨工业大学, 中国, 2008)
    [91] Granstrom K, Schon T B, Nieto J I, Ramos F T. Learning to close loops from range data. The International Journal of Robotics Research, 2011, 30(14): 1728-1754
    [92] Granstrom K, Schon T B. Learning to close the loop from 3D point clouds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 2089-2095
    [93] Granstrom K, Callmer J, Ramos F, Nieto J. Learning to detect loop closure from range data. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 15-22
    [94] Fox D, Ko J, Konolige K, Stewart B. Robotics Research. Berlin: Springer, 2005. 60-69
    [95] Stewart B, Ko J, Fox D. The revisiting problem in mobile robot map building: a hierarchical Bayesian approach. In: Proceedings of the 19th conference on Uncertainty in Artificial Intelligence. Acapulco, Mexico: IEEE, 2002. 551-558
    [96] Singer R A, Sea R G. A new filter for optimal tracking in dense multitarget environments. In: Proceedings of theninth Allerton Conference Circuit and System Theory. Monticello, USA: IEEE, 1972. 201-211
    [97] Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments [Ph.D. dissertation], The University of Sydney, Australia, 2002
    [98] Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854
    [99] Tian Shu. Application of Data Association on Simultaneous Localization and Mapping for an AUV [Master dissertation], Ocean University of China, China, 2011(田舒. 数据关联技术在 AUV 同时定位与地图构建算法中的应用 [硕士学位论文], 中国海洋大学, 中国, 2011)
    [100] Thrun S, Liu Y. Robotics Research. Berlin: Springer, 2005. 254-266
    [101] Howard A, Sukhatme G, Mataric M J. Multirobot simultaneous localization and mapping using manifold representations. Proceedings of the IEEE, 2006, 94(7): 1360-1369
    [102] Kim B, Kaess M, Fletcher L, Leonard J. Multiple relative pose graphs for robust cooperative mapping. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK: IEEE, 2010. 3185-3192
    [103] Howard A. Multi-robot simultaneous localization and mapping using particle filters. The International Journal of Robotics Research, 2006, 25(12): 1243-1256
    [104] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [105] Aragues R, Cortes J, Sagues C. Distributed map merging in a robotic network. In: Proceedings of Workshop on Network Robot Systems: human concepts of space and activity, integration and applications. Nice France: IEEE, 2008. 104-110
    [106] Aragues R, Cortes J, Sagues C. Distributed consensus algorithms for merging feature-based maps with limited communication. Robotics and Autonomous Systems, 2011, 59(3): 163-180
    [107] Aragues R, Cortes J, Sagues C. Dynamic consensus for merging visual maps under limited communications. In: Proceedings of Robotics and Automation. Alaska, USA: IEEE, 2010. 3032-3037
    [108] Aragues R, Montijano E, Sagues C. Consistent data association in multi-robot systems with limited communications. In: Proceedings of Robotics: Science and Systems. Zaragoza, Spain: IEEE, 2010. 97-104
    [109] Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 6698-6703
    [110] Murray, Olfati-Saber R. Consensus protocols for networks of dynamic agents. In: Proceedings of the 2003 American Control Conference. Denver, CO, USA: IEEE, 2003. 951-956
    [111] Li W L, Jia Y M. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal Processing, 2012, 92(10): 2464-2470
    [112] Spanos D P, Olfati-Saber R, Murray R M. Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Los Angeles, California, USA: IEEE, 2005. 133-139
    [113] Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference. Seville, Spain: IEEE, 2005. 8179-8184
    [114] Olfati-Saber R. Kalman-consensus filter: optimality, stability, and performance. In: Proceedings of the 28th Chinese Control Conference Decision and Control. Shanghai, China: IEEE, 2009. 7036-7042
    [115] Simonetto A, Keviczky T, Babuska R. Distributed nonlinear estimation for robot localization using weighted consensus. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Alaska, USA: IEEE, 2010. 3026-3031
    [116] Vercauteren T, Wang X. Decentralized sigma-point information filters for target tracking in collaborative sensor networks. IEEE Transactions on Signal Processing, 2005, 53(8): 2997-3009
    [117] Li W, Jia Y. Consensus-based distributed multiple model UKF for jump Markov nonlinear systems. IEEE Transactions on Automatic Control, 2012, 57(1): 227-233
    [118] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [119] Xiao L, Boyd S, Lall S. A scheme for robust distributed sensor fusion based on average consensus. In: Proceedings of Information Processing in Sensor Networks. Portland, OR, USA: IEEE, 2005. 63-70
    [120] Freeman R A, Yang P, Lynch K M. Distributed estimation and control of swarm formation statistics. In: Proceedings of the 2006 American Control Conference. Minneapolis, USA: IEEE, 2006. 749-755
    [121] Yang P. Stability and convergence properties of dynamic average consensus estimators. In: Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA: IEEE, 2006. 338-343
    [122] Leung K Y K, Barfoot T D, Liu H H T. Decentralized cooperative simultaneous localization and mapping for dynamic and sparse robot networks. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 3554-3561
    [123] Cunningham A, Paluri M, Dellaert F. DDF-SAM: fully distributed slam using constrained factor graphs. In: Proceedings of Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 3025-3030
    [124] Dellaert F, Kaess M. Square root SAM: simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 2006, 25(12): 1181-1203
    [125] Erinc G, Carpin S. Anytime merging of appearance-based maps. Autonomous Robots, 2014, 36(3): 241-256
    [126] Jones B, Campbell M, Tong L. Consensus of stochastic maps. In: Proceedings of SPIE Defense, Security, and Sensing. Baltimore, Maryland, USA: IEEE, 2012. 7-15
    [127] Saeedi S, Paull L, Trentini M, Seto M, Li H. Efficient map merging using a probabilistic generalized voronoi diagram. In: Proceedings of Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 4419-4424
    [128] Saeedi S, Paull L, Trentini M, Seto M, Li H. Map merging using Hough peak matching. In: Proceedings of Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 4683-4688
    [129] Cai Y, Tang Z, Zhao C. New layered SOA-based architecture for multi-robots cooperative online SLAM. Chinese Journal of Electronics, 2014, 23(1): 25-30
    [130] Cai K, Ishii H. Average consensus on general strongly connected digraphs. Automatica, 2012, 48(11): 2750-2761
    [131] Li S, Guo Y. Distributed consensus filter on directed graphs with switching topologies. In: Proceedings of the 2013 American Control Conference. Washington D.C., USA: IEEE, 2013. 6151-6156
    [132] Fu S Y, Kuai X K, Zheng R, Yang G S, Hou Z G. Local vs. global: indoor multi-robot simultaneous localization and mapping in wireless sensor networks. In: Proceedings of Networking, Sensing and Control. Chicago, IL, USA: IEEE, 2010. 171-176
    [133] Ma X, Tan J D. Active sensing with mobile sensor networks: a survey. Journal of Communications, 2013, 8(2): 110-127
    [134] Stone P, Kaminka G A, Kraus S, Rosenscheind J S, Agmona N. Teaching and leading an ad hoc teammate: collaboration without pre-coordination. Artificial Intelligence, 2013, 203: 35-65
    [135] Munoz-Gmez L, Alencastre-Miranda M, Lopez-Padilla R, Murrieta-Cid R. Exploration and map-building under uncertainty with multiple heterogeneous robots. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 2295-2301
    [136] Kontitsis M, Theodorou E A, Todorov E. Multi-robot active SLAM with relative entropy optimization. In: Proceedings of American Control Conference. Washington, DC, USA: IEEE, 2013. 2757-2764
    [137] Kosmatopoulos E B, Rovas D V, Doitsidis L, Aboudolas K, Roumeliotis S I. A generic framework for scalable and convergent multi-robot active simultaneous localization, mapping and target tracking. In: Proceedings of the 19th Mediterranean Conference on Control and Automation. Corfu, Greece: IEEE, 2011. 151-156
    [138] Wu X L, Yuan J, Sun F C, Chen H, Huang S Z. An approach to multi-robot cooperative SLAM. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 4904-4909
    [139] Cai Y F, Tang Z M, Zhao C X. A new approach of formation navigation derived from multi-robots cooperative online FastSLAM. Journal of Control Theory and Applications, 2012, 10(4): 451-457
    [140] Kuppan Chetty R M, Singaperumal M, Nagarajan T. Behavior based multi robot formations with active obstacle avoidance based on switching control strategy. Advanced Materials Research, 2012, 433: 6630-6635
    [141] Li X P, Sun D, Yang J. A bounded controller for multirobot navigation while maintaining network connectivity in the presence of obstacles. Automatica, 2013, 49(1): 285-292
    [142] Yang Tian-Tian, Liu Zhi-Yuan, Chen Hong, Pei Run. Formation control and obstacle avoidance for multiple mobile robots. Acta Automatica Sinica, 2013, 34(5): 588-592(杨甜甜, 刘志远, 陈虹, 裴润. 多移动机器人避障编队控制. 自动化学报, 2008, 34(5): 588-592)
    [143] Abrate F, Bona B, Indri M, Rosa S, Tibaldi F. Distributed Autonomous Robotic Systems. Berlin: Springer, 2013. 147-160
    [144] Wang H M, Hou Z G, Cheng L, Tan M. Online mapping with a mobile robot in dynamic and unknown environments. International Journal of Modelling, Identification and Control, 2008, 4(4): 415-423
    [145] Fu S Y, Kuai X K, Zheng R, Yang G S, Hou Z G. Local vs. global: indoor multi-robot simultaneous localization and mapping in wireless sensor networks. In: Proceedings of Networking, Sensing and Control. Chicago, IL, USA: IEEE,2010. 171-176
    [146] Ma X, Tan J D. Active sensing with mobile sensor networks: a survey. Journal of Communications, 2013, 8(2): 110-127
    [147] Stone P, Kaminka G A, Kraus S, Rosenscheind J S, Agmona N. Teaching and leading an ad hoc teammate: collaboration without pre-coordination. Artiˉcial Intelligence, 2013, 203: 35-65
    [148] Munoz-Gmez L, Alencastre-Miranda M, Lopez-Padilla R, Murrieta-Cid R. Exploration and map-building under uncertainty with multiple heterogeneous robots. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 2295-2301
    [149] Kontitsis M, Theodorou E A, Todorov E. Multi-robot active SLAM with relative entropy optimization. In: Proceedings of American Control Conference. Washington, DC, USA: IEEE, 2013. 2757-2764
    [150] Kosmatopoulos E B, Rovas D V, Doitsidis L, Aboudolas K, Roumeliotis S I. A generic framework for scalable and convergent multi-robot active simultaneous localization, mapping and target tracking. In: Proceedings of the 19th Mediterranean Conference on Control and Automation. Corfu, Greece: IEEE, 2011. 151-156
    [151] Wu X L, Yuan J, Sun F C, Chen H, Huang S Z. An approach to multi-robot cooperative SLAM. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE, 2012. 4904-4909
    [152] Cai Y F, Tang Z M, Zhao C X. A new approach of formation navigation derived from multi-robots cooperative online FastSLAM. Journal of Control Theory and Applications, 2012, 10(4): 451-457
    [153] Kuppan Chetty R M, Singaperumal M, Nagarajan T. Behavior based multi robot formations with active obstacle avoidance based on switching control strategy. Advanced Materials Research, 2012, 433: 6630-6635
    [154] Li X P, Sun D, Yang J. A bounded controller for multirobot navigation while maintaining network connectivity in the presence of obstacles. Automatica, 2013, 49(1): 285-292
    [155] Yang Tian-Tian, Liu Zhi-Yuan, Chen Hong, Pei Run. Formation control and obstacle avoidance for multiple mobile robots. Acta Automatica Sinica, 2013, 34(5): 588-592 (杨甜甜, 刘志远, 陈虹, 裴润. 多移动机器人避障编队控制. 自动化学报, 2008, 34(5): 588-592)
    [156] Abrate F, Bona B, Indri M, Rosa S, Tibaldi F. Distributed Autonomous Robotic Systems. Berlin: Springer, 2013. 147-160
    [157] Wang H M, Hou Z G, Cheng L, Tan M. Online mapping with a mobile robot in dynamic and unknown environments. International Journal of Modelling, Identification and Control, 2008, 4(4): 415-423
    [158] Ji Xiu-Cai, Zheng Zhi-Qiang, Zhang Hui. Analysis and control of robot position error in SLAM. Acta Automatica Sinica, 2008, 34(3): 323-330 (季秀才, 郑志强, 张辉. SLAM 问题中机器人定位误差分析与控制.自动化学报, 2008, 34(3): 323-330)
  • 加载中
计量
  • 文章访问数:  1861
  • HTML全文浏览量:  79
  • PDF下载量:  1931
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-24
  • 修回日期:  2014-05-01
  • 刊出日期:  2014-10-20

目录

    /

    返回文章
    返回