[1]
|
Didaci L, Fumera G, Roli F. Diversity in classifier ensembles: fertile concept or dead end? In: Proceedings of the 11th International Workshop on Multiple Classifier Systems. Nanjing, China: Sprinter-Verlag, 2013. 37-48
|
[2]
|
[2] Bar A, Rokach L, Shani G, Shapira B, Schclar A. Improving simple collaborative filtering models using ensemble methods. In: Proceedings of the 11th International Workshop on Multiple Classifier Systems. Nanjing, China: Sprinter-Verlag, 2013. 1-12
|
[3]
|
[3] Sciarrone F. An extension of the Q diversity metric from single-label to multi-label and multi-ranking multiple classifier systems for pattern classification. In: Proceedings of the 2012 International Conference on Machine Learning and Cybernetics. Xi'an, China: IEEE, 2012. 6-10
|
[4]
|
[4] Radtke P, Granger E, Sabourin R, Gorodnichy D. Adaptive ensemble selection for face re-identification under class imbalance. In: Proceedings of the 11th International Workshop on Multiple Classifier Systems. Nanjing, China: Sprinter-Verlag, 2013. 95-108
|
[5]
|
Sun Liang, Han Chong-Zhao, Shen Jian-Jing, Dai Ning. Generalized rough set method for ensemble feature selection and multiple classifier fusion. Acta Automatica Sinica, 2008, 34(3): 298-304 (孙亮, 韩崇昭, 沈建京, 戴宁. 集成特征选择的广义粗集方法与多分类器融合. 自动化学报, 2008, 34(3): 298-304)
|
[6]
|
Zhang Cai-Po. Fuzzy Integral and Fusion of Multiple Classifiers Applying in Medical Diagnosis [Master dissertation], Tianjin University of Technology, China, 2010 (张彩坡. 模糊积分及多分类器融合在医疗诊断中的应用 [硕士学位论文], 天津理工大学, 中国, 2010)
|
[7]
|
Zhang Xue-Feng, Wang Peng-Hui, Feng Bo, Du Lan, Liu Hong-Wei. A new method to improve radar HRRP recognition and outlier rejection performance based on classifier combination. Acta Automatica Sinica, 2013, 39(1): 1-9 (张学峰, 王鹏辉, 冯博, 杜兰, 刘宏伟. 基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法. 自动化学报, 2013, 39(1): 1-9)
|
[8]
|
[8] Xu L, Krzyzak A, Suen C Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(3): 418-435
|
[9]
|
[9] Lam L, Suen C Y. Optimal combinations of pattern classifiers. Pattern Recognition Letters, 1995, 16(9): 945-954
|
[10]
|
Huang Y S, Suen C Y. A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(1): 90-94
|
[11]
|
Verlinde P, Ghollet G. Comparing decision fusion paradigms using k-NN based classifiers, decision trees and logistic regression in a multi-modal identity verification application. In: Proceedings of the 2nd International Conference on Audio and Video Based Biometric Person Authentication. Washington D.C., USA: Springer-Verlag, 1999. 188-193
|
[12]
|
Lv Yue, Shi Peng-Fei, Zhao Yu-Ming. Voting principle for combination of multiple classifiers. Journal of Shanghai Jiaotong University, 2000, 34(5): 680-683 (吕岳, 施鹏飞, 赵宇明. 多分类器组合的投票表决规则. 上海交通大学学报, 2000, 34(5): 680-683)
|
[13]
|
Yang Yi, Han De-Qiang, Han Chong-Zhao. A novel diversity measure of multiple classifier systems based on distance of evidence. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1093-1099(杨艺, 韩德强, 韩崇昭. 一种基于证据距离的多分类器差异性度量. 航空学报, 2012, 33(6): 1093-1099)
|
[14]
|
Kittler J, Hatef M, Duin R P W, Matas J. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239
|
[15]
|
Ali K M, Pazzam M J. On the Link Between Error Correlation and Error Reduction in Decision Tree Ensembles, Technical Report 95-38, Department of Information and Computer Science, University of California Irvine, 1995
|
[16]
|
Tumer K, Ghosh J. Theoretical Foundations of Linear and Order Statistics Combiners for Neural Pattern Classifiers, Technical Report TR-95-02-98, Computer and Vision Research Center, University of Texas, Austin, 1995
|
[17]
|
Dietterich T G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning, 2000, 40(2): 139-157
|
[18]
|
Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 2003, 51(2): 181-207
|
[19]
|
Shipp C A, Kuncheva L I. Relationship between combination methods and measures of diversity in combining classifiers. Information Fusion, 2002, 3(2): 135-148
|
[20]
|
Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion, 2005, 6(1): 21-36
|
[21]
|
Brown G, Wyatt J, Harris R, Yao X. Diversity creation methods: a survey and categorization. Information Fusion, 2005, 6(1): 5-20
|
[22]
|
Gal-Or M, May J H, Spangler W E. Assessing the predictive accuracy of diversity measures with domain-dependent, asymmetric misclassification costs. Information Fusion, 2005, 6(1): 37-48
|
[23]
|
Fan T G, Zhu Y, Chen J M. A new measure of classifier diversity in multiple classifier system. In: Proceedings of the 7th International Conference on Machine Learning and Cybernetics. Kunming, China, 2008. 18-21
|
[24]
|
Trawinski K, Quirin A, Cordn A. On the combination of accuracy and diversity measures for genetic selection of bagging fuzzy rule-based multiclassification systems. In: Proceedings of the 9th International Conference on Intelligent Systems Design and Applications. Pisa, Italy: IEEE, 2009. 121-127
|
[25]
|
Nascimento D S C, Canuto A M P, Silva L M M, Coelho A L V. Combining different ways to generate diversity in bagging models: an evolutionary approach. In: Proceedings of the 2011 International Joint Conference on Neural Networks. San Jose, USA: IEEE, 2011. 2235-2242
|
[26]
|
Kamel M S, Wanas N M. Data dependence in combining classifiers. In: Proceedings of the 4th International Workshop on Multiple Classifier Systems. Guilford, UK: Springer-Verlag, 2003. 1-14
|
[27]
|
Ho T K, Hull J J, Srihari S N. Decision combination in multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(1): 66-75
|
[28]
|
Efron B, Tibshirani R. An Introduction to the Bootstrap. New York: Chapman Hall, 1993
|
[29]
|
Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139
|
[30]
|
Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 2003, 51(2): 181-207
|
[31]
|
Ma Cai-Hong, Dai Qin, Liu Shi-Bin. A hybrid PSO-ISODATA algorithm for remote sensing image segmentation. In: Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). Xi'an, China: IEEE, 2012. 1371-1375
|
[32]
|
Zhang Xue-Gong. Pattern Recognition (3rd edition). Beijing: Tsinghua University Press, 2010(张学工. 模式识别 (第三版). 北京: 清华大学出版社, 2010)
|
[33]
|
Ho T K. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844
|
[34]
|
Cheplygina V, Tax D M J. Pruned random subspace method for one-class classifiers. In: Proceedings of the 10th International Conference on Multiple Classifier Systems. Naples, Italy: Springer-Verlag, 2011. 96-105
|