2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超磁致伸缩作动器的率相关Hammerstein模型与H鲁棒跟踪控制

郭咏新 张臻 毛剑琴 周克敏

郭咏新, 张臻, 毛剑琴, 周克敏. 超磁致伸缩作动器的率相关Hammerstein模型与H∞鲁棒跟踪控制. 自动化学报, 2014, 40(2): 197-207. doi: 10.3724/SP.J.1004.2014.00197
引用本文: 郭咏新, 张臻, 毛剑琴, 周克敏. 超磁致伸缩作动器的率相关Hammerstein模型与H鲁棒跟踪控制. 自动化学报, 2014, 40(2): 197-207. doi: 10.3724/SP.J.1004.2014.00197
GUO Yong-Xin, ZHANG Zhen, MAO Jian-Qin, ZHOU Ke-Min. Rate-dependent Hammerstein Model and H∞ Robust Tracking Control of Giant Magnetostrictive Actuators. ACTA AUTOMATICA SINICA, 2014, 40(2): 197-207. doi: 10.3724/SP.J.1004.2014.00197
Citation: GUO Yong-Xin, ZHANG Zhen, MAO Jian-Qin, ZHOU Ke-Min. Rate-dependent Hammerstein Model and H Robust Tracking Control of Giant Magnetostrictive Actuators. ACTA AUTOMATICA SINICA, 2014, 40(2): 197-207. doi: 10.3724/SP.J.1004.2014.00197

超磁致伸缩作动器的率相关Hammerstein模型与H鲁棒跟踪控制

doi: 10.3724/SP.J.1004.2014.00197
基金项目: 

国家自然科学基金重点项目(91016006,91116002);中央高校基本科研业务费专项资金(30420111109,30420120305,SWJTU11ZT06);新能源电力系统国家重点实验室开放课题(LAPS13019);高铁联合基金(U1134205)资助

详细信息
    作者简介:

    张臻 博士,北京航空航天大学自动化科学与电气工程学院讲师.主要研究方向为智能结构的控制与应用,迟滞非线性系统建模与控制.E-mail:zhangzhen@buaa.edu.cn

Rate-dependent Hammerstein Model and H Robust Tracking Control of Giant Magnetostrictive Actuators

Funds: 

Supported by National Natural Science Foundation of China (91016006, 91116002) and the Fundamental Research Funds for the Central High Education Institutions (30420111109, 30420120 305, SWJTU11ZT06), State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (LAPS130 19), and High Speed Rail Joint Fund (U1134205)

  • 摘要: 利用Hammerstein模型对超磁致伸缩作动器(Giant magnetostrictive actuators,GMA)的率相关迟滞非线性进行建模,分别以改进的 Prandtl-Ishlinskii(Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(Autoregressive model with exogenous input,ARX)代表Hammerstein模型中的静态非线性部分和线性动态部分,并给出了模型的辨识方法. 此模型能在1~100Hz频率范围内较好地描述GMA的率相关迟滞非线性. 提出了带有逆补偿器和H∞鲁棒控制器的二自由度跟踪控制策略,实时跟踪控制实验结果证明了所提策略的有效性.
  • [1] Yang Da-Zhi. Smart Materials and Intelligent Systems. Tianjin: Tianjin University Press, 2000(杨大智. 智能材料与智能系统. 天津: 天津大学出版社, 2000)
    [2] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2): 48-60
    [3] Brokate M, Sprekels J. Hysteresis and Phase Transitions. Berlin: Springer-Verlag, 1996
    [4] Mayergoyz I D. Dynamic Preisach models of hysteresis. IEEE Transactions on Magnetics, 1988, 24(6): 2925-2927
    [5] Webb G V, Lagoudas D C, Kurdila A J. Hysteresis modeling of SMA actuators for control applications. Journal of Intelligent Material Systems and Structures, 1998, 9(6): 432-448
    [6] Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. European Journal of Control, 2003, 9(4): 407-418
    [7] Dong R L, Tan Y H, Chen H, Xie Y Q. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators. Sensors and Actuators A: Physical, 2008, 143(2): 370-376
    [8] Deng L, Tan Y H. Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators. Sensors and Actuators A: Physical, 2008, 148(1): 259-270
    [9] Lei W, Mao J Q, Ma Y H. A new modeling method for nonlinear rate-dependent hysteresis system based on LS-SVM. In: Proceedings of the 10th IEEE International Conference on Control, Automation, Robotics and Vision. Hanoi, Vietnam: IEEE, 2008. 1442-1446
    [10] Mao J Q, Ding H S. Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis. Science in China Series F: Information Sciences, 2009, 52(4): 656-673
    [11] Slaughter J C, Dapino M J, Smith R C, Flatau A B. Modeling of a Terfenol-D ultrasonic transducer. In: Proceedings of Smart Structures and Materials 2000: Smart Structures and Integrated Systems. Newport Beach, USA: SPIE, 2000. 366-377
    [12] Venkataraman R. Modeling and Adaptive Control of Magnetostrictive Actuators[Ph.D. dissertation], University of Maryland, USA, 1999
    [13] Tan X B, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators. Automatica, 2004, 40(9): 1469-1480
    [14] Zhang Z, Mao J Q. Modeling rate-dependent hysteresis for magnetostrictive actuator. Materials Science Forum, 2007, 546-549: 2251-2256
    [15] Ma Y H, Mao J Q, Zhang Z. On generalized dynamic Preisach operator with application to hysteresis nonlinear systems. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1527-1533
    [16] Xiao S L, Li Y M. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model. IEEE Transactions on Control Systems Technology, 2012, PP(99): 1-9
    [17] Al Janaideh M, Su C Y, Rakheja S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Material and Structures, 2008, 17(3): 035026.1-035026.11
    [18] Al Janaideh M, Rakheja S, Su C Y. A generalized Prandtl-Ishlinskii model for characterizing rate dependent hysteresis. In: Proceedings of the 16th IEEE International Conference on Control Applications. Singapore: IEEE, 2007. 343-348
    [19] Iyer R V, Tan X B, Krishnaprasad P S. Approximate inversion of the preisach hysteresis operator with application to control of smart actuators. IEEE Transactions on Automatic Control, 2005, 50(6): 798-810
    [20] Cavallo A, Natale C, Pirozzi S, Visone C. Effects of hysteresis compensation in feedback control systems. IEEE Transactions on Magnetics, 2003, 39(3): 1389-1392
    [21] Tao G, Kokotovic P V. Adaptive Control of Systems with Actuator and Sensor Nonlinearities. New York, USA: John Wiley and Sons, 1996
    [22] Webb G V, Kurdila A J. Identification and adaptive control for a class of hysteresis operators. American Institute of Aeronautics and Astronautics, 1997, DOI: 10.2514/6.1997-1208: 603-611
    [23] Zhang Z, Chen Q W, Mao J Q, Wang Z Y. A generalized stress-dependent Prandtl-Ishlinskii model and its adaptive inverse compensation with model reference for GMA. In: Proceedings of the 8th Asian Control Conference. Kaohsiung, Taiwan, China: IEEE, 2011. 535-540
    [24] Wang Q Q, Su C Y, Chen X K. Robust adaptive control of a class of nonlinear systems with Prandtl-Ishlinskii hysteresis. In: Proceedings of the 43rd IEEE International Conference on Decision and Control. Atlantis, Paradise Island, Bahamas: IEEE, 2004. 213-218
    [25] Wang Q Q, Su C Y, Tan Y H. On the control of plants with hysteresis: overview and a Prandtl-Ishlinskii hysteresis based control approach. Acta Automatica Sinica, 2005, 31(1): 92-104
    [26] Nealis J M, Smith R C. Model-based robust control design for magnetostrictive transducers operating in hysteretic and nonlinear regimes. IEEE Transactions on Control Systems Technology, 2007, 15(1): 22-39
    [27] Tan X B, Baras J S. A robust control framework for smart actuators. In: Proceedings of the 2003 American Control Conference. Denver, Denver, Colorado, USA: IEEE, 2003. 4645-4650
    [28] Zhou K, Doyle J C. Essentials of Robust Control. Upper Saddle River: Prentice Hall, 1999
    [29] Zhou K, Doyle J C, Glover K. Robust and Optimal Control. Upper Saddle River: Prentice Hall, 1996
    [30] Giri F, Bai E W. Block-oriented Nonlinear Systems Identification. Berlin: Springer-Verlag, 2010. 4-6
    [31] Wu Min, Gui Wei-Hua, He Yong. Modern Robust Control (2nd edition). Changsha: Central South University Press, 2006. 339-341(吴敏, 桂卫华, 何勇. 现代鲁棒控制 (第2版). 长沙: 中南大学出版社, 2006. 339-341)
  • 加载中
计量
  • 文章访问数:  1454
  • HTML全文浏览量:  49
  • PDF下载量:  968
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-03-27
  • 刊出日期:  2014-02-20

目录

    /

    返回文章
    返回