2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核分布一致局部领域适应学习

陶剑文 王士同

陶剑文, 王士同. 核分布一致局部领域适应学习. 自动化学报, 2013, 39(8): 1295-1309. doi: 10.3724/SP.J.1004.2013.01295
引用本文: 陶剑文, 王士同. 核分布一致局部领域适应学习. 自动化学报, 2013, 39(8): 1295-1309. doi: 10.3724/SP.J.1004.2013.01295
TAO Jian-Wen, WANG Shi-Tong. Kernel Distribution Consistency Based Local Domain Adaptation Learning. ACTA AUTOMATICA SINICA, 2013, 39(8): 1295-1309. doi: 10.3724/SP.J.1004.2013.01295
Citation: TAO Jian-Wen, WANG Shi-Tong. Kernel Distribution Consistency Based Local Domain Adaptation Learning. ACTA AUTOMATICA SINICA, 2013, 39(8): 1295-1309. doi: 10.3724/SP.J.1004.2013.01295

核分布一致局部领域适应学习

doi: 10.3724/SP.J.1004.2013.01295
基金项目: 

国家自然科学基金(60975027, 60903100);教育部人文社会科学研究规划基金(13YJAZH084);浙江省自然科学基金(LY13F020011)资助

详细信息
    作者简介:

    王士同 江南大学数字媒体学院教授.主要研究方向为人工智能, 机器学习.E-mail: wxwangst@yahoo.com.cn

Kernel Distribution Consistency Based Local Domain Adaptation Learning

Funds: 

Supported by National Natural Science Foundation of China (60975027, 60903100), Humanities and Social Sciences Research Fund of Ministry of Education (13YJAZH084), and Natural Science Foundation of Zhejiang Province (LY13F020011)

  • 摘要: 针对领域适应学习(Domain adaptation learning, DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domain adaptation classifier, KDC-LDAC),在某个通用再生核Hilbert空间(Universally reproduced kernel Hilbert space, URKHS),基于结构风险最小化模型, KDC-LDAC首先学习一个核分布一致正则化支持向量机(Support vector machine, SVM),对目标数据进行初始划分; 然后,基于核局部学习思想,对目标数据类别信息进行局部回归重构; 最后,利用学习获得的类别信息,在目标领域训练学习一个适于目标判别的分类器.人 造和实际数据集实验结果显示,所提方法具有优化或可比较的领域适应学习性能.
  • [1] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210
    [2] Xiang E W, Cao B, Hu D H, Yang Q. Bridging domains using world wide knowledge for transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(6): 770-783
    [3] Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers, 1999. 200-209
    [4] Ozawa S, Roy A, Roussinov D. A multitask learning model for online pattern recognition. IEEE Transactions on Neural Networks, 2009, 20(3): 430-445
    [5] Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
    [6] Bruzzone L, Marconcini M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787
    [7] Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM). New York, NY, USA: ACM, 2009. 1327-1336
    [8] Ben-David S, Blitzer J, Crammer K, Pereira F. Analysis of representations for domain adaptation. In: Proceedings of the 2006 Conference on Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007. 137-144
    [9] Ling X, Dai W Y, Xue G R, Yang Q, Yu Y. Spectral domain-transfer learning. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2008. 488-496
    [10] Dai W Y, Xue G R, Yang Q, Yu Y. Co-clustering based classification for out-of-domain documents. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California, USA: ACM, 2007. 210-219
    [11] Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 Conference on Empirical Methods Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006. 120-128
    [12] Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (ACL'07). 2007. 440-447
    [13] Sriperumbudur B K, Gretton A, Fukumizu K, Schölkopf B, Lanckriet G R G. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, 2010, 11(3): 1517-1561
    [14] Gretton A, Harchaoui Z, Fukumizu K, Sriperumbudur B K. A fast, consistent kernel two-sample test. In: Proceedings of Advances in Neural Information Processing Systems 22, the 23rd Annual Conference on Neural Information Processing Systems (NIPS 2009). Red Hook, NY: MIT Press, 2010. 673-681
    [15] Vapnik V N. Statistical Learning Theory. New York: John Wiley and Sons, 1998
    [16] Zeng H, Cheung Y M. Feature selection and kernel learning for local learning-based clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1532-1547
    [17] Wu M R, Schölkopf B. Transductive classification via local learning regularization. In: Proceedings of the 11th International Conference Artificial Intelligence and Statistics. Cambridge, MA: MIT Press, 2007. 628-635
    [18] Hofmann T, Schölkopf B, Smola A J. Kernel methods in machine learning. Annals of Statistics, 2008, 36(3): 1171-1220
    [19] Sriperumbadur B K, Fukumizu K, Gretton A, Lanckriet G, Schoelkopf B. Kernel choice and classifiability for RKHS embeddings of probability distributions. In: Proceedings of Advances in Neural Information Processing Systems 22, the 23rd Annual Conference on Neural Information Processing Systems (NIPS 2009). Red Hook, NY: MIT Press, 2010. 1750-1758
    [20] Smola A J, Gretton A, Song L, Schölkopf B. A Hilbert space embedding for distributions. In: Proceedings of the 18th International Conference on Algorithmic Learning Theory. Sendai, Japan: Springer-Verlag, 2007. 13-31
    [21] Schölkopf B, Herbrich R, Smola A J. A generalized representer theorem. In: Proceedings of the 14th Annual Conference on Computational Learning Theory COLT'2001. Berlin Heidelberg: Springer Press, 2001. 416-426
    [22] Wu Y C, Liu Y F. Robust truncated hinge loss support vector machines. Journal of the American Statistical Association, 2007, 102(479): 974-983
    [23] Tao Jian-Wen, Wang Shi-Tong. Locality-preserved maximum information variance v-support vector machine. Acta Automatica Sinica, 2012, 38(1): 79-108 (陶剑文, 王士同. 局部保留最大信息差v-支持向量机. 自动化学报, 2012, 38(1): 79-108)
    [24] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7: 2399-2434
    [25] Cai D, He X F, Han J W, Zhang H J. Orthogonal Laplacianfaces for face recognition. IEEE Transactions on Image Processing, 2006, 15(11): 3608-3614
    [26] Gao J, Fan W, Jiang J, Han J W. Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008. 283-291
    [27] Huang J Y, Smola A J, Gretton A, Borgwardt K M, Schölkopf B. Correcting sample selection bias by unlabeled data. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2006. 601-608
    [28] Jiang W, Zavesky E, Chang S F, Loui A. Cross-domain learning methods for high-level visual concept classification. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, CA: IEEE, 2008. 161-164
    [29] Xu D, Chang S F. Video event recognition using kernel methods with multilevel temporal alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1985-1997
  • 加载中
计量
  • 文章访问数:  1720
  • HTML全文浏览量:  64
  • PDF下载量:  1761
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-28
  • 修回日期:  2012-03-19
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回